Some Results on Total Mean Cordial Labeling of Graphs

R.Ponraj and S.Sathish Narayanan
(Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, India)
E-mail: ponrajmaths@gmail.com, sathishrvss@gmail.com

Abstract

A graph $G=(V, E)$ with p vertices and q edges is said to be a Total Mean Cordial graph if there exists a function $f: V(G) \rightarrow\{0,1,2\}$ such that for each edge $x y$ assign the label $\left\lceil\frac{f(x)+f(y)}{2}\right\rceil$ where $x, y \in V(G)$, and the total number of 0,1 and 2 are balanced. That is $\left|e v_{f}(i)-e v_{f}(j)\right| \leq 1, i, j \in\{0,1,2\}$ where $e v_{f}(x)$ denotes the total number of vertices and edges labeled with $x(x=0,1,2)$. In this paper, we investigate the total mean cordial labeling behavior of $L_{n} \odot K_{1}, S\left(P_{n} \odot 2 K_{1}\right), S\left(W_{n}\right)$ and some more graphs.

Key Words: Smarandachely total mean cordial labeling, cycle, path, wheel, union, corona, ladder.

AMS(2010): 05C78.

§1. Introduction

Throughout this paper we considered finite, undirected and simple graphs. The symbols $V(G)$ and $E(G)$ will denote the vertex set and edge set of a graph G. A graph labeling is an assignment of integers to the vertices or edges, or both, subject to certain conditions. Labeled graphs serves as a useful mathematical model for a broad range of application such as coding theory, X-ray crystallography analysis, communication network addressing systems, astronomy, radar, circuit design and database management [1]. Ponraj, Ramasamy and Sathish Narayanan [3] introduced the concept of total mean cordial labeling of graphs and studied about the total mean cordial labeling behavior of Path, Cycle, Wheel and some more standard graphs. In [4,6], Ponraj and Sathish Narayanan proved that $K_{n}^{c}+2 K_{2}$ is total mean cordial if and only if $n=1,2,4,6,8$ and they investigate the total mean cordial labeling behavior of prism, gear, helms. In [5], Ponraj, Ramasamy and Sathish Narayanan investigate the Total Mean Cordiality of Lotus inside a circle, bistar, flower graph, $K_{2, n}$, Olive tree, $P_{n}^{2}, S\left(P_{n} \odot K_{1}\right), S\left(K_{1, n}\right)$. In this paper we investigate $L_{n} \odot K_{1}, S\left(P_{n} \odot 2 K_{1}\right), S\left(W_{n}\right)$ and some more graphs. If x is any real number. Then the symbol $\lfloor x\rfloor$ stands for the largest integer less than or equal to x and $\lceil x\rceil$ stands for the smallest integer greater than or equal to x. For basic definitions that are not defined here are used in the sense of Harary [2].

[^0]
§2. Preliminaries

Definition 2.1 A total mean cordial labeling of a graph $G=(V, E)$ is a function $f: V(G) \rightarrow$ $\{0,1,2\}$ such that for each edge xy assign the label $\left\lceil\frac{f(x)+f(y)}{2}\right\rceil$ where $x, y \in V(G)$, and the total number of 0,1 and 2 are balanced. That is $\left|e v_{f}(i)-e v_{f}(j)\right| \leq 1, i, j \in\{0,1,2\}$ where $e v_{f}(x)$ denotes the total number of vertices and edges labeled with $x(x=0,1,2)$. If there exists a total mean cordial labeling on a graph G, we will call G is total mean cordial.

Furthermore, let $H \leq G$ be a subgraph of G. If there is a function f from $V(G) \rightarrow\{0,1,2\}$ such that $\left.f\right|_{H}$ is a total mean cordial labeling but $\left\lceil\frac{f(u)+f(v)}{2}\right\rceil$ is a constant for all edges in $G \backslash H$, such a labeling and G are then respectively called Smarandachely total mean cordial labeling and Smarandachely total mean cordial labeling graph respect to H.

The following results are frequently used in the subsequent section.

Definition 2.2 The product graph $G_{1} \times G_{2}$ is defined as follows: Consider any two vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ in $V=V_{1} \times V_{2}$. Then u and v are adjacent in $G_{1} \times G_{2}$ whenever $\left[\begin{array}{llll}u_{1}=v_{1} & \text { and } u_{2} & \text { adj } & v_{2}\end{array}\right]$ or $\left[\begin{array}{lll}u_{2}=v_{2} & \text { and } u_{1} & \text { adj } \\ v_{1}\end{array}\right]$. Note that the graph $L_{n}=P_{n} \times P_{2}$ is called the ladder on n steps.

Definition 2.3 Let G_{1} and G_{2} be two graphs with vertex sets V_{1} and V_{2} and edge sets E_{1} and E_{2} respectively. Then their join $G_{1}+G_{2}$ is the graph whose vertex set is $V_{1} \cup V_{2}$ and edge set is $E_{1} \cup E_{2} \cup\left\{u v: u \in V_{1}\right.$ and $\left.v \in V_{2}\right\}$. Also the graph $W_{n}=C_{n}+K_{1}$ is called the wheel.

Definition 2.4 Let G_{1}, G_{2} respectively be $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)$ graphs. The corona of G_{1} with G_{2}, $G_{1} \odot G_{2}$ is the graph obtained by taking one copy of G_{1} and p_{1} copies of G_{2} and joining the $i^{\text {th }}$ vertex of G_{1} with an edge to every vertex in the $i^{\text {th }}$ copy of G_{2}.

Definition 2.5 The union of two graphs G_{1} and G_{2} is the graph $G_{1} \cup G_{2}$ with $V\left(G_{1} \cup G_{2}\right)=$ $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

Definition 2.6 The subdivision graph $S(G)$ of a graph G is obtained by replacing each edge $u v$ of G by a path uwv.

Theorem 2.7([7]) Let G be $a(p, q)$ Total Mean Cordial graph and $n \neq 3$ then $G \cup P_{n}$ is also total mean cordial.

Main Results

Theorem 3.1 $S\left(W_{n}\right)$ is total mean cordial.
Proof Let $V\left(S\left(W_{n}\right)\right)=\left\{u, u_{i}, x_{i}, y_{i}: 1 \leq i \leq n\right\}, E\left(S\left(W_{n}\right)\right)=\left\{u_{i} y_{i}, y_{i} u_{i+1}: 1 \leq i \leq\right.$ $n-1\} \cup\left\{u_{n} y_{n}, y_{n} u_{1}\right\} \cup\left\{u x_{i}, x_{i} u_{i}: 1 \leq i \leq n\right\}$. Clearly $\left|V\left(S\left(W_{n}\right)\right)\right|+\left|V\left(S\left(W_{n}\right)\right)\right|=7 n+1$.

Case 1. $n \equiv 0(\bmod 12)$.

Let $n=12 t$ and $t>0$. Define $f: V\left(S\left(W_{n}\right)\right) \rightarrow\{0,1,2\}$ by $f(u)=0$,

$$
\begin{aligned}
f\left(x_{i}\right) & =0, \quad 1 \leq i \leq 12 t \\
f\left(u_{i}\right) & =0, \quad 1 \leq i \leq 2 t \\
f\left(u_{2 t+i}\right) & =2, \quad 1 \leq i \leq 7 t \\
f\left(u_{9 t+i}\right) & =1, \quad 1 \leq i \leq 3 t \\
f\left(y_{i}\right) & =1, \quad 1 \leq i \leq 2 t-1 \\
f\left(y_{2 t-1+i}\right) & =2, \quad 1 \leq i \leq 7 t \\
f\left(y_{9 t-1+i}\right) & =1, \quad 1 \leq i \leq 3 t+1
\end{aligned}
$$

Here $e v_{f}(0)=28 t+1, e v_{f}(1)=e v_{f}(2)=28 t$.
Case 2. $n \equiv 1(\bmod 12)$.
Let $n=12 t+1$ and $t>0$. Define a map $f: V\left(S\left(W_{n}\right)\right) \rightarrow\{0,1,2\}$ by $f(u)=0$,

$$
\begin{aligned}
f\left(x_{i}\right) & =0, \quad 1 \leq i \leq 12 t+1 \\
f\left(u_{i}\right) & =0, \quad 1 \leq i \leq 2 t \\
f\left(u_{2 t+i}\right) & =2, \quad 1 \leq i \leq 7 t \\
f\left(u_{9 t+i}\right) & =1, \quad 1 \leq i \leq 3 t+1 \\
f\left(y_{i}\right) & =1, \quad 1 \leq i \leq 2 t-1 \\
f\left(y_{2 t-1+i}\right) & =2, \quad 1 \leq i \leq 7 t+1 \\
f\left(y_{9 t+i}\right) & =1, \quad 1 \leq i \leq 3 t+1
\end{aligned}
$$

Here $e v_{f}(0)=e v_{f}(1)=28 t+3, e v_{f}(2)=28 t+2$.
Case 3. $n \equiv 2(\bmod 12)$.
Let $n=12 t+2$ and $t>0$. Define a function $f: V\left(S\left(W_{n}\right)\right) \rightarrow\{0,1,2\}$ by $f(u)=0$,

$$
\begin{aligned}
f\left(x_{i}\right) & =0, \quad 1 \leq i \leq 12 t+2 \\
f\left(u_{i}\right) & =0, \quad 1 \leq i \leq 2 t \\
f\left(u_{2 t+i}\right) & =2, \quad 1 \leq i \leq 7 t+1 \\
f\left(u_{9 t+1+i}\right) & =1, \quad 1 \leq i \leq 3 t+1 \\
f\left(y_{i}\right) & =1, \quad 1 \leq i \leq 2 t \\
f\left(y_{2 t+i}\right) & =2, \quad 1 \leq i \leq 7 t+1 \\
f\left(y_{9 t+1+i}\right) & =1, \quad 1 \leq i \leq 3 t+1
\end{aligned}
$$

In this case $e v_{f}(0)=e v_{f}(1)=e v_{f}(2)=28 t+5$.
Case 4. $\quad n \equiv 3(\bmod 12)$.
Let $n=12 t-9$ and $t>0$. For $n=3$, the Figure 1 shows that $S\left(W_{3}\right)$ is total mean cordial.

Figure 1
Now assume $t \geq 2$. Define a map $f: V\left(S\left(W_{n}\right)\right) \rightarrow\{0,1,2\}$ by $f(u)=0$,

$$
\begin{aligned}
f\left(x_{i}\right) & =0, \quad 1 \leq i \leq 12 t-9 \\
f\left(u_{i}\right) & =0, \quad 1 \leq i \leq 2 t-2 \\
f\left(u_{2 t-2+i}\right) & =2, \quad 1 \leq i \leq 7 t-5 \\
f\left(u_{9 t-7+i}\right) & =1, \quad 1 \leq i \leq 3 t-2 \\
f\left(y_{i}\right) & =1, \quad 1 \leq i \leq 2 t-3 \\
f\left(y_{2 t-3+i}\right) & =2, \quad 1 \leq i \leq 7 t-5 \\
f\left(y_{9 t-8+i}\right) & =1, \quad 1 \leq i \leq 3 t-1
\end{aligned}
$$

In this case $e v_{f}(0)=e v_{f}(1)=28 t-21, e v_{f}(2)=28 t-20$.
Case 5. $n \equiv 4(\bmod 12)$.
Let $n=12 t-8$ and $t>0$. The following Figure 2 shows that $S\left(W_{4}\right)$ is total mean cordial.

Figure 2
Now assume $t \geq 2$. Define $f: V\left(S\left(W_{n}\right)\right) \rightarrow\{0,1,2\}$ by $f(u)=0$,

$$
\begin{aligned}
f\left(x_{i}\right) & =0, \quad 1 \leq i \leq 12 t-8 \\
f\left(u_{i}\right) & =0, \quad 1 \leq i \leq 2 t-2 \\
f\left(u_{2 t-2+i}\right) & =2, \quad 1 \leq i \leq 7 t-5 \\
f\left(u_{9 t-7+i}\right) & =1, \quad 1 \leq i \leq 3 t-1 \\
f\left(y_{i}\right) & =1, \quad 1 \leq i \leq 2 t-3 \\
f\left(y_{2 t-3+i}\right) & =2, \quad 1 \leq i \leq 7 t-4 \\
f\left(y_{9 t-7+i}\right) & =1, \quad 1 \leq i \leq 3 t-1 .
\end{aligned}
$$

In this case $e v_{f}(0)=28 t-19, e v_{f}(1)=e v_{f}(2)=28 t-18$.

Case 6. $n \equiv 5(\bmod 12)$.
Let $n=12 t-7$ and $t>0$. Define a function $f: V\left(S\left(W_{n}\right)\right) \rightarrow\{0,1,2\}$ by $f(u)=0$,

$$
\begin{aligned}
f\left(x_{i}\right) & =0, \quad 1 \leq i \leq 12 t-7 \\
f\left(u_{i}\right) & =1, \quad 1 \leq i \leq 4 t-3 \\
f\left(u_{4 t-3+i}\right) & =2, \quad 1 \leq i \leq 7 t-4 \\
f\left(u_{11 t-7+i}\right) & =1, \quad 1 \leq i \leq t \\
f\left(y_{i}\right) & =0, \quad 1 \leq i \leq 4 t-3 \\
f\left(y_{4 t-3+i}\right) & =2, \quad 1 \leq i \leq 7 t-4 \\
f\left(y_{11 t-7+i}\right) & =1, \quad 1 \leq i \leq t
\end{aligned}
$$

In this case $e v_{f}(0)=e v_{f}(1)=e v_{f}(2)=28 t-16$.
Case 7. $n \equiv 6(\bmod 12)$.
Let $n=12 t-6$ and $t>0$. Define a function $f: V\left(S\left(W_{n}\right)\right) \rightarrow\{0,1,2\}$ by $f(u)=0$,

$$
\begin{aligned}
f\left(x_{i}\right) & =0, \quad 1 \leq i \leq 12 t-6 \\
f\left(u_{i}\right) & =0, \quad 1 \leq i \leq 2 t-1 \\
f\left(u_{2 t-1+i}\right) & =2, \quad 1 \leq i \leq 7 t-4 \\
f\left(u_{9 t-5+i}\right) & =1, \quad 1 \leq i \leq 3 t-1 \\
f\left(y_{i}\right) & =1, \quad 1 \leq i \leq 2 t-2 \\
f\left(y_{2 t-2+i}\right) & =2, \quad 1 \leq i \leq 7 t-3 \\
f\left(y_{9 t-5+i}\right) & =1, \quad 1 \leq i \leq 3 t-1
\end{aligned}
$$

In this case $e v_{f}(0)=e v_{f}(1)=28 t-7, e v_{f}(2)=28 t-6$.
Case 8. $n \equiv 7(\bmod 12)$.
Let $n=12 t-5$ and $t>0$. Define a function $f: V\left(S\left(W_{n}\right)\right) \rightarrow\{0,1,2\}$ by $f(u)=0$,

$$
\begin{aligned}
f\left(x_{i}\right) & =0, \quad 1 \leq i \leq 12 t-5 \\
f\left(u_{i}\right) & =0, \quad 1 \leq i \leq 2 t-1 \\
f\left(u_{2 t-1+i}\right) & =2, \quad 1 \leq i \leq 7 t-3 \\
f\left(u_{9 t-4+i}\right) & =1, \quad 1 \leq i \leq 3 t-1 \\
f\left(y_{i}\right) & =1, \quad 1 \leq i \leq 2 t-2 \\
f\left(y_{2 t-2+i}\right) & =2, \quad 1 \leq i \leq 7 t-3 \\
f\left(y_{9 t-5+i}\right) & =1, \quad 1 \leq i \leq 3 t .
\end{aligned}
$$

Here $e v_{f}(0)=e v_{f}(1)=28 t-11, e v_{f}(2)=28 t-12$.
Case 9. $n \equiv 8(\bmod 12)$.

Let $n=12 t-4$ and $t>0$. Define a function $f: V\left(S\left(W_{n}\right)\right) \rightarrow\{0,1,2\}$ by $f(u)=0$,

$$
\begin{aligned}
f\left(x_{i}\right) & =0, \quad 1 \leq i \leq 12 t-4 \\
f\left(u_{i}\right) & =0, \quad 1 \leq i \leq 2 t-1 \\
f\left(u_{2 t-1+i}\right) & =2, \quad 1 \leq i \leq 7 t-2 \\
f\left(u_{9 t-3+i}\right) & =1, \quad 1 \leq i \leq 3 t-1 \\
f\left(y_{i}\right) & =1, \quad 1 \leq i \leq 2 t-1 \\
f\left(y_{2 t-1+i}\right) & =2, \quad 1 \leq i \leq 7 t-3 \\
f\left(y_{9 t-4+i}\right) & =1, \quad 1 \leq i \leq 3 t .
\end{aligned}
$$

In this case $e v_{f}(0)=e v_{f}(1)=e v_{f}(2)=28 t-9$.
Case 10. $n \equiv 9(\bmod 12)$.

Let $n=12 t-3$ and $t>0$. Define a function $f: V\left(S\left(W_{n}\right)\right) \rightarrow\{0,1,2\}$ by $f(u)=0$,

$$
\begin{aligned}
f\left(x_{i}\right) & =0, \quad 1 \leq i \leq 12 t-3 \\
f\left(u_{i}\right) & =0, \quad 1 \leq i \leq 2 t-1 \\
f\left(u_{2 t-1+i}\right) & =2, \quad 1 \leq i \leq 7 t-2 \\
f\left(u_{9 t-3+i}\right) & =1, \quad 1 \leq i \leq 3 t \\
f\left(y_{i}\right) & =1, \quad 1 \leq i \leq 2 t-2 \\
f\left(y_{2 t-2+i}\right) & =2, \quad 1 \leq i \leq 7 t-1 \\
f\left(y_{9 t-3+i}\right) & =1, \quad 1 \leq i \leq 3 t .
\end{aligned}
$$

In this case $e v_{f}(0)=e v_{f}(1)=28 t-7, e v_{f}(2)=28 t-6$.

Case 11. $n \equiv 10(\bmod 12)$.

Let $n=12 t-2$ and $t>0$. Define a function $f: V\left(S\left(W_{n}\right)\right) \rightarrow\{0,1,2\}$ by $f(u)=0$,

$$
\begin{aligned}
f\left(x_{i}\right) & =0, \quad 1 \leq i \leq 12 t-2 \\
f\left(u_{i}\right) & =0, \quad 1 \leq i \leq 2 t-1 \\
f\left(u_{2 t-1+i}\right) & =2, \quad 1 \leq i \leq 7 t-1 \\
f\left(u_{9 t-2+i}\right) & =1, \quad 1 \leq i \leq 3 t \\
f\left(y_{i}\right) & =1, \quad 1 \leq i \leq 2 t-2 \\
f\left(y_{2 t-2+i}\right) & =2, \quad 1 \leq i \leq 7 t-1 \\
f\left(y_{9 t-3+i}\right) & =1, \quad 1 \leq i \leq 3 t+1
\end{aligned}
$$

In this case $e v_{f}(0)=28 t-5, e v_{f}(1)=e v_{f}(2)=28 t-4$.
Case 12. $n \equiv 11(\bmod 12)$.

Let $n=12 t-1$ and $t>0$. Define a function $f: V\left(S\left(W_{n}\right)\right) \rightarrow\{0,1,2\}$ by $f(u)=0$,

$$
\begin{aligned}
f\left(x_{i}\right) & =0, \quad 1 \leq i \leq 12 t-1 \\
f\left(u_{i}\right) & =1, \quad 1 \leq i \leq 4 t-1 \\
f\left(u_{4 t-1+i}\right) & =2, \quad 1 \leq i \leq 7 t \\
f\left(u_{11 t-1+i}\right) & =1, \quad 1 \leq i \leq t \\
f\left(y_{i}\right) & =0, \quad 1 \leq i \leq 4 t-1 \\
f\left(y_{4 t-1+i}\right) & =2, \quad 1 \leq i \leq 7 t-1 \\
f\left(y_{11 t-2+i}\right) & =1, \quad 1 \leq i \leq t+1
\end{aligned}
$$

In this case $e v_{f}(0)=e v_{f}(1)=e v_{f}(2)=28 t-6$.
Hence $S\left(W_{n}\right)$ is total mean cordial.

Theorem 3.2 $S\left(P_{n} \odot 2 K_{1}\right)$ is total mean cordial.

Proof Let $V\left(S\left(P_{n} \odot 2 K_{1}\right)\right)=\left\{u_{i}, v_{i}, w_{i}, x_{i}, y_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i}^{\prime}: 1 \leq i \leq n-1\right\}$ and $E\left(S\left(P_{n} \odot 2 K_{1}\right)\right)=\left\{u_{i} u_{i}^{\prime}, u_{i}^{\prime} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}, u_{i} w_{i}, v_{i} x_{i}, w_{i} y_{i}: 1 \leq i \leq n\right\}$. Clearly $\left|V\left(S\left(P_{n} \odot 2 K_{1}\right)\right)\right|+\left|V\left(S\left(W_{n} \odot 2 K_{1}\right)\right)\right|=12 n-3$. Now we define a map $f: V\left(S\left(P_{n} \odot 2 K_{1}\right)\right) \rightarrow$ $\{0,1,2\}$ by $f\left(v_{1}\right)=0, f\left(w_{1}\right)=1, f\left(u_{n}\right)=0$,

$$
\begin{aligned}
& f\left(u_{i}\right)=f\left(u_{i}^{\prime}\right)=0, \quad 1 \leq i \leq n-1 \\
& f\left(v_{i}\right)=f\left(w_{i}\right)=1, \quad 2 \leq i \leq n \\
& f\left(x_{i}\right)=f\left(y_{i}\right) \quad=2, \quad 1 \leq i \leq n
\end{aligned}
$$

In this case $e v_{f}(0)=e v_{f}(1)=e v_{f}(2)=4 n-1$.
Hence $S\left(P_{n} \odot 2 K_{1}\right)$ is total mean cordial.

Theorem 3.3 $L_{n} \odot K_{1}$ is total mean cordial.

Proof Let $V\left(L_{n} \odot K_{1}\right)=\left\{u_{i}, v_{i}, x_{i}, y_{i}: 1 \leq i \leq n\right\}$ and $E\left(L_{n} \odot K_{1}\right)=\left\{x_{i} u_{i}, u_{i} v_{i}\right.$, $\left.v_{i} y_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$. Here $\left|V\left(L_{n} \odot K_{1}\right)\right|+\left|E\left(L_{n} \odot K_{1}\right)\right|=9 n-2$. Define a map $f: V\left(L_{n} \odot K_{1}\right) \rightarrow\{0,1,2\}$ by

$$
\begin{array}{rlrl}
f\left(u_{i}\right) & =0, & 1 \leq i \leq n \\
f\left(x_{i}\right) & =0, & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(y_{i}\right) & =1, & & 1 \leq i \leq n \\
f\left(x_{\left\lceil\frac{n}{2}\right\rceil+i}\right) & =1, & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(v_{i}\right) & =2, & 1 \leq i \leq n .
\end{array}
$$

The following Table 1 shows that f is a total mean cordial labeling of $L_{n} \odot K_{1}$.

Nature of n	$e v_{f}(0)$		$e v_{f}(1)$	
$n \equiv 0(\bmod 2)$	$\frac{9 n-2}{3}$		$\frac{9 n-2}{3}$	$\frac{9 n-2}{3}$
$n \equiv 1(\bmod 2)$	$\frac{9 n-2}{3}$	$\left[\frac{9 n-2}{3}\right.$	$\left[\frac{9 n-2}{3}\right.$	

Hence $L_{n} \odot K_{1}$ is Total Mean Cordial.

Theorem 3.4 The graph $P_{1} \cup P_{2} \cup \ldots \cup P_{n}$ is total mean cordial.
Proof We prove this theorem by induction on n. For $n=1,2,3$ the result is true, see Figure 3.

Figure 3
Assume the result is true for $P_{1} \cup P_{2} \cup \ldots \cup P_{n-1}$. Then by Theorem 2.7, $\left(P_{1} \cup P_{2} \cup \ldots \cup\right.$ $\left.P_{n-1}\right) \cup P_{n}$ is total mean cordial.

Theorem 3.5 Let C_{n} be the cycle $u_{1} u_{2} \ldots u_{n} u_{1}$. Let $G C_{n}$ be a graph with $V\left(G C_{n}\right)=V\left(C_{n}\right) \cup$ $\left\{v_{i}: 1 \leq i \leq n\right\}$ and $E\left(G C_{n}\right)=E\left(C_{n}\right) \cup\left\{u_{i} v_{i}, u_{i+1} v_{i}: 1 \leq i \leq n-1\right\} \cup\left\{u_{n} v_{n}, u_{1} v_{n}\right\}$. Then $G C_{n}$ is total mean cordial.

Proof Clearly, $\left|V\left(G C_{n}\right)\right|+\left|E\left(G C_{n}\right)\right|=5 n$.
Case 1. $n \equiv 0(\bmod 3)$.
Let $n=3 t$ and $t>0$. Define $f: V\left(G C_{n}\right) \rightarrow\{0,1,2\}$ by

$$
\begin{aligned}
& f\left(u_{i}\right)=f\left(v_{i}\right) \quad=0, \quad 1 \leq i \leq t \\
& f\left(u_{t+i}\right)=f\left(v_{t+i}\right) \quad=2, \quad 1 \leq i \leq t \\
& f\left(u_{2 t+i}\right)=f\left(v_{2 t+i}\right)=1, \quad 1 \leq i \leq t-1
\end{aligned}
$$

$f\left(u_{3 t}\right)=1$ and $f\left(v_{3 t}\right)=0$. In this case $e v_{f}(0)=e v_{f}(1)=e v_{f}(2)=5 t$.
Case 2. $n \equiv 1(\bmod 3)$.
Let $n=3 t+1$ and $t>0$. Define $f: V\left(G C_{n}\right) \rightarrow\{0,1,2\}$ by

$$
\begin{array}{rll}
f\left(u_{i}\right) & =f\left(v_{i}\right) & =0, \quad 1 \leq i \leq t \\
f\left(u_{t+1+i}\right) & =f\left(v_{t+i}\right) & =2, \quad 1 \leq i \leq t \\
f\left(u_{2 t+1+i}\right) & =f\left(v_{2 t+1+i}\right) & =1, \quad 1 \leq i \leq t
\end{array}
$$

$f\left(u_{t+1}\right)=0, f\left(v_{2 t+1}\right)=2$. In this case $e v_{f}(0)=5 t+1, e v_{f}(1)=e v_{f}(2)=5 t+2$.

Case 3. $n \equiv 2(\bmod 3)$.
Let $n=3 t+2$ and $t>0$. Construct a vertex labeling $f: V\left(G C_{n}\right) \rightarrow\{0,1,2\}$ by

$$
\begin{aligned}
f\left(u_{i}\right) & =f\left(v_{i}\right) \\
f\left(u_{t+2+i}\right) & =f\left(v_{t+1+i}\right) \\
f\left(u_{2 t+2+i}\right) & =f\left(v_{2 t+2+i}\right)
\end{aligned}=1 \leq, \quad 1 \leq i \leq t+1 . \quad 1 \leq i \leq t
$$

$f\left(u_{t+1}\right)=1, f\left(v_{2 t+2}\right)=2$. In this case $e v_{f}(0)=e v_{f}(1)=5 t+3, e v_{f}(2)=5 t+4$.
Hence $G C_{n}$ is total mean cordial.

Example 3.6 A total mean cordial labeling of $G C_{8}$ is given in Figure 4.

Figure 4

Theorem 3.6 Let $S t\left(L_{n}\right)$ be a graph obtained from a ladder L_{n} by subdividing each step exactly once. Then $S t\left(L_{n}\right)$ is total mean cordial.

Proof Let $V\left(S t\left(L_{n}\right)\right)=\left\{u_{i}, v_{i}, w_{i}: 1 \leq i \leq n\right\}$ and $E\left(S t\left(L_{n}\right)\right)=\left\{u_{i} w_{i}, w_{i} v_{i}: 1 \leq i \leq\right.$ $n\} \cup\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$. It is clear that $\left|V\left(S t\left(L_{n}\right)\right)\right|+\left|E\left(S t\left(L_{n}\right)\right)\right|=7 n-2$.

Case 1. $\quad n \equiv 0(\bmod 6)$.
Let $n=6 t$. Define a map $f: V\left(S t\left(L_{n}\right)\right) \rightarrow\{0,1,2\}$ as follows.

$$
\begin{aligned}
f\left(u_{i}\right) & =0, & & 1 \leq i \leq 6 t \\
f\left(w_{i}\right) & =0, & & 1 \leq i \leq t \\
f\left(w_{t+i}\right) & =1, & & 1 \leq i \leq 5 t \\
f\left(v_{i}\right) & =2, & & 1 \leq i \leq 5 t \\
f\left(v_{5 t+i}\right) & =1, & & 1 \leq i \leq t .
\end{aligned}
$$

In this case $e v_{f}(0)=e v_{f}(1)=14 t-1, e v_{f}(2)=14 t$.
Case 2. $n \equiv 1(\bmod 6)$.

Let $n=6 t+1$ and $t \geq 1$. Define a function $f: V\left(S t\left(L_{n}\right)\right) \rightarrow\{0,1,2\}$ by

$$
\begin{aligned}
f\left(u_{i}\right) & =0, \quad 1 \leq i \leq 6 t+1 \\
f\left(w_{i}\right) & =0, \quad 1 \leq i \leq t \\
f\left(w_{t+i}\right) & =2, \quad 1 \leq i \leq 5 t+1 \\
f\left(v_{i}\right) & =1, \quad 1 \leq i \leq 4 t+1 \\
f\left(v_{4 t+1+i}\right) & =2, \quad 1 \leq i \leq 2 t .
\end{aligned}
$$

Here $e v_{f}(0)=14 t+1, e v_{f}(1)=e v_{f}(2)=14 t+2$.

Case 3. $\quad n \equiv 2(\bmod 6)$.

Let $n=6 t+2$ and $t \geq 0$. The Figure 5 shows that $S t\left(L_{2}\right)$ is total mean cordial.

Figure 5

Consider the case for $t \geq 1$. Define $f: V\left(S t\left(L_{n}\right)\right) \rightarrow\{0,1,2\}$ as follows.

$$
\begin{aligned}
f\left(u_{i}\right) & =0, \quad 1 \leq i \leq 6 t+2 \\
f\left(w_{i}\right) & =0, \quad 1 \leq i \leq t \\
f\left(w_{t+i}\right) & =1, \quad 1 \leq i \leq 5 t+1 \\
f\left(v_{i}\right) & =2, \quad 1 \leq i \leq 5 t+1 \\
f\left(v_{5 t+1+i}\right) & =1, \quad 1 \leq i \leq t .
\end{aligned}
$$

and $f\left(w_{6 t+2}\right)=2, f\left(v_{6 t+2}\right)=0$. Here $e v_{f}(0)=e v_{f}(1)=e v_{f}(2)=14 t+4$.

Case 4. $n \equiv 3(\bmod 6)$.

Let $n=6 t-3$ and $t \geq 1$. Define a function $f: V\left(S t\left(L_{n}\right)\right) \rightarrow\{0,1,2\}$ by

$$
\begin{array}{rlll}
f\left(u_{i}\right) & =f\left(w_{i}\right) & =f\left(v_{i}\right) & =0, \quad 1 \leq i \leq 2 t-2 \\
f\left(u_{2 t-1+i}\right) & =f\left(w_{2 t-1+i}\right) & =f\left(v_{2 t+i}\right) & =1, \quad 1 \leq i \leq 2 t-2 \\
f\left(u_{4 t-2+i}\right) & =f\left(w_{4 t-1+i}\right) & =f\left(v_{4 t-2+i}\right) & =2, \quad 1 \leq i \leq 2 t-2
\end{array}
$$

$f\left(u_{2 t-1}\right)=f\left(w_{2 t-1}\right)=0, f\left(u_{4 t-2}\right)=f\left(w_{4 t-2}\right)=f\left(w_{4 t-1}\right)=1$ and $f\left(u_{6 t-3}\right)=f\left(v_{6 t-3}\right)=$ 2. In this case $e v_{f}(0)=14 t-7, e v_{f}(1)=e v_{f}(2)=14 t-8$.

Case 5. $n \equiv 4(\bmod 6)$.

Let $n=6 t-2$ and $t>0$. Define $f: V\left(S t\left(L_{n}\right)\right) \rightarrow\{0,1,2\}$ by

$$
\begin{aligned}
f\left(u_{i}\right) & =0, \quad 1 \leq i \leq 6 t-2 \\
f\left(w_{i}\right) & =0, \quad 1 \leq i \leq t \\
f\left(w_{t+i}\right) & =1, \quad 1 \leq i \leq 5 t-2 \\
f\left(v_{i}\right) & =2, \quad 1 \leq i \leq 5 t-2 \\
f\left(v_{5 t-2+i}\right) & =1, \quad 1 \leq i \leq t .
\end{aligned}
$$

In this case $e v_{f}(0)=e v_{f}(1)=14 t-5, e v_{f}(2)=14 t-6$.
Case 6. $n \equiv 5(\bmod 6)$.
Let $n=6 t-1$ and $t>0$. Define a function $f: V\left(S t\left(L_{n}\right)\right) \rightarrow\{0,1,2\}$ by

$$
\begin{aligned}
f\left(u_{i}\right) & =0, \quad 1 \leq i \leq 6 t-1 \\
f\left(w_{i}\right) & =0, \quad 1 \leq i \leq t \\
f\left(w_{t+i}\right) & =1, \quad 1 \leq i \leq 5 t-1 \\
f\left(v_{i}\right) & =2, \quad 1 \leq i \leq 5 t-1 \\
f\left(v_{5 t-1+i}\right) & =1, \quad 1 \leq i \leq t .
\end{aligned}
$$

Here $e v_{f}(0)=e v_{f}(1)=e v_{f}(2)=14 t-3$.
Hence $S t\left(L_{n}\right)$ is total mean cordial.

References

[1] J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 16 (2013) \# Ds6.
[2] F.Harary, Graph theory, Narosa Publishing house, New Delhi (2001).
[3] R.Ponraj, A.M.S.Ramasamy and S.Sathish Narayanan, Total mean cordial labeling of graphs, International Journal of Mathematical combinatorics, 4(2014), 56-68.
[4] R.Ponraj and S.Sathish Narayanan, Total mean cordiality of $K_{n}^{c}+2 K_{2}$, Palestine Journal of Mathematics, 4(2)(2015), 431-438.
[5] R.Ponraj, A.M.S.Ramasamy and S.Sathish Narayanan, Total mean cordial labeling of some graphs, Utilitas Mathematica, (Accepted for Publication).
[6] R.Ponraj and S.Sathish Narayanan, Total mean cordial labeling of some cycle related graphs, Journal of Applied Mathematics and Informatics, 33(2015), No. 1- 2, pp. 101 110.
[7] R.Ponraj and S.Sathish Narayanan, Further results on total mean cordial labeling of graphs (communicated).

[^0]: ${ }^{1}$ Received October 31, 2014, Accepted June 2, 2015.

