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Abstract

This paper defines the notion of special elements like
Smarandache zero divisors, Smarandache units, Smarandache
idempotents and Smarandache nilpotnents for semigroups. This is the
first time such study has been carried out on semigroups.
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1 Introduction

This paper has three sections. Section
one is introductory in  nature. Section two
defines the notion of special elements like
Smarandache zero divisors, Smarandache units,
Smarandache idempotents and Smarandache
nilpotnents for semigroups. The conclusions
are given in the final section.

2 Special Elements in Semigroups :

For the first time this paper defines
the notion of special elements like Smarandache
zero divisors, Smarandache units, Smarandache
idempotents and Smarandache nilpotnents for
semigroups whenever applicable. These
concepts are introduced and studied in case
of rings and semirings3,4. These concepts are
illustrated by examples. Conditions for these
elements to exist in a semigroup is determined.

Definition 2.1: Let S be a semigroup
with unit and zero divisors. x, y  S is said to
be a Smarandache zero divisor (S-zero divisor)
if x  y = 0 and there exists a, b  S \ {x, y, 0}
with
1) xa = 0 or ax = 0,
2) yb = 0 or by = 0 and
3) ab  0 or ba  0.

Examples of S-zero divisors are given only in
case of S = {Zn,} for S(n) the symmetric
semigroup has no zero divisors1,2.

Example 2.1: Let S = {Z20, } be the
semigroup.

10, 16  S are zero divisors as 10 × 16 = 0
(mod 20) and is also a S-zero divisor for 5, 6
 Z20 \ {0, 10, 16} is such that

5  16 = 0 (mod 20), 6  10 = 0 (mod
20) and 6  5  0 (mod 20).
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It is important to note all semigroups built using
{Zn, }, n a composite number has zero
divisors but it need not in general be S-zero
divisors.

Example 2.2: Let S = Z10 = {0, 1, 2,
…, 9} be the semigroup under . 2, 5  Z10 is
such that 2  5 = 0 (mod 10) is a zero divisor
and is not a S-zero divisor.

       In view of this the following result is true:

Proposition 2.1: Let S be a semigroup.
Every S-zero divisor is a zero divisor but a
zero divisor in general is not a S-zero divisor.

Proof: One way is evident from the
definition of a S-zero divisor. Example 2.2
proves the other part of the result.

Consider S(n); this is a semigroup
which has no zero divisors; so S-zero divisor
has no relevance to this semigroup S(n).

Next the notion of S-units is defined
for semigroups.

Definition 2.2: Let S be a semigroup
with unit (monoid). x  S \ {1} is defined as
the Smarandache unit (S-unit) if there exists
y  S with

1) xy = 1 there exist a, b  S \ {x, y, 1}.
2) i) xa = y or ax = y or

ii) yb = x or by = x and
iii) ab = 1.

(2(i) or 2(ii) is satisfied it is enough to make
a S-unit).

   This is represented by the following
examples:

Example 2.3: Let S = {Z15, } be the
semigroup.

Now 2  Z15 ; 2.8 = 1 (mod 15).
Consider 4  Z15; 42  1 and 2.4 = 8.
Thus (2, 8) is a S-unit of the semigroup S.

Proposition 2.2: Every S-unit in a
semigroup S is a unit. However all units in
general are not S-units in S.

Proof: Consider 4  Z15 in the above
example 2.3 which is a unit in Z15; but 4 is not
a S-unit for in this case x = y = 4. 4a  4 or
4b  4 with a  b = 1.

In view of this, as in case of S-units in
a ring3 the following result is proved for
semigroups.

Theorem 2.1: Let S be a monoid. If
x  S \ {1} is a S-unit; xy = 1 then x  y.

Proof: The proof is similar to rings.
Let x  S \ {0} be a S-unit, this implies
xy = 1 with xa = y or ax = y (by = x or yb =
x) and ab = 1 if x = y then x2 = 1; xa = x; x2

a = x2 forcing a = 1; as x2 = 1 a contradiction.

Now for the first time the notion of S-
idempotents in rings is adopted to semigroups
in this paper.

Definition 2.3: Let S be a semigroup.
x  S \ {0, 1} is defined as a Smarandache
idempotent of S if x2 = x and there exist y 
S \ {0, 1, x} such that y2 = x and yx = x or
xy = y. y is defined as the Smarandache
coidempotent (S coidempotent) and the pair
is denoted by (x, y).
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Example 2.4: Let S = {Z12, } be the
semigroup. 4  S is such that 42 = 4 (mod 8).
82 = 4 and 8  4 = 8 so 4 is a S-idempotent.
Clearly if x is an idempotent.

But every idempotent in a semigroup
need not be a S-idempotent.

Example 2.5: Let S(4) be the symmetric
semigroup. S(4) has no zero divisors but has
units and idempotents.

Here the study pertains to finding S-
idempotents and S-units if any in S(4).

Take

x = 
1 2 3 4
1 1 1 1
 
 
 

  S(4);

clearly x2 = x; let

y =
1 2 3 4
1 3 1 1
 
 
 

  S(4).

y2=
1 2 3 4
1 3 1 1
 
 
 

 
1 2 3 4
1 3 1 1
 
 
 

 = 
1 2 3 4
1 1 1 1
 
 
 

= x

and 
1 2 3 4
1 1 1 1
 
 
 

 
1 2 3 4
1 1 1 1
 
 
 

=
1 2 3 4
1 1 1 1
 
 
 

= x.

Thus x is an S-idempotent of S(4).
Thus the symmetric semigroup S(4) has S-
idempotents.
Take

   x=
1 2 3 4
2 3 4 1
 
 
 

, y = 
1 2 3 4
4 1 2 3
 
 
 

 S(4).

x y=
1 2 3 4 1 2 3 4
2 3 4 1 4 1 2 3
   
   
   

 = 1 2 3 4
1 2 3 4
 
 
 

 = 1.

Let

a = 
1 2 3 4
3 4 1 2
 
 
 

  S(4);

x  a = 1 2 3 4
2 3 4 1
 
 
 

 
1 2 3 4
3 4 1 2
 
 
 

 = 1 2 3 4
4 1 2 3
 
 
 

 = y..

Now

a  a = 
1 2 3 4
3 4 1 2
 
 
 

 
1 2 3 4
3 4 1 2
 
 
 

=
1 2 3 4
1 2 3 4
 
 
 

= 1.

Thus x is a S-unit of S(4). Hence S(4)
has both S-idempotents and S-units. However
as S(4) has no zero divisors. S(4) cannot have
S-zero divisors as every S-zero divisor is a zero
divisor.

In view of these the following result
is proved.

Theorem 2.2: Let S(n) be the symmetric
semigroup of degree n.
i) S(n) has no S-zero divisors,
ii) S(n) has S-units and
iii) S(n) has S-idempotents.

Proof : Since S(n) is the symmetric
semigroup of degree n and has no zero divisors.
Since every S-zero divisor is a zero divisor
hence S(n) cannot have S-zero divisors. S(n)
has S-units. For take

x= 1 2 3 4 5
2 3 4 1 5

n
n

 
 
 




, y= 1 2 3 4 5

4 1 2 3 5
n
n

 
 
 




S(n).

x   y = 1 2 3 4 5 1 2 3 4 5
2 3 4 1 5 4 1 2 3 5

n n
n n

   
   
   

 


 

= 
1 2 3 4 5
1 2 3 4 5

n
n

 
 
 




 = 1;

the identity element of S(n).
Let

a = 
1 2 3 4 5
3 4 1 2 5

n
n

 
 
 




  S(n)

x   a=
1 2 3 4 5
2 3 4 1 5

n
n

 
 
 






1 2 3 4 5
3 4 1 2 5

n
n

 
 
 







= 
1 2 3 4 5
4 1 2 3 5

n
n

 
 
 




= y

and

a   a= 1 2 3 4 5
3 4 1 2 5

n
n

 
 
 



 
1 2 3 4 5
3 4 1 2 5

n
n

 
 
 





= 
1 2 3 4 5
1 2 3 4 5

n
n

 
 
 




 = 1  S(n).

Thus x is a S-unit of S(n). Hence (ii) is true.

Now to prove S has S-idempotents.

Let
x1= 1 2 3 4 5

1 1 1 1 5
n
n

 
 
 




S(n). 2

1

1 2 3 4 5
1 1 1 1 5

n
x

n
 

  
 




= x1.

Hence x1 is an idempotent of S(n). Take

y1=
1 2 3 4 5
1 3 1 1 5

n
n

 
 
 




S(n). 2

1

1 2 3 4 5
1 1 1 1 5

n
y

n
 

  
 




=x1

y1  x1= 1 2 3 4 5
1 3 1 1 5

n
n

 
 
 






1 2 3 4 5
1 1 1 1 5

n
n

 
 
 





= 
1 2 3 4 5
1 1 1 1 5

n
n

 
 
 




 = x1.

Thus x1 is an S-idempotent of S(n) hence (iii)
is proved.

The next natural question would be;
will the co-idempotents in S(n) be unique. The
answer is no.

This is proved by the following result:

Proposition 2.3: Let S(n) be the
symmetric semigroup of degree n; the S-
coidempotents of an S-idempotent in S(n)
in general are not unique.

Proof: The result is proved by a

counter example.

x1 = 
1 2 3 4 5
1 1 1 1 5

n
n

 
 
 




  S(n)

is an S-idempotent of S(n). The S-coide-
mpotent of x1 is

y1 = 
1 2 3 4 5
1 3 1 1 5

n
n

 
 
 




 in S(n).

Consider
y2=

1 2 3 4 5
1 4 1 1 5

n
n

 
 
 




S(n). 2

2

1 2 3 4 5
1 1 1 1 5

n
y

n
 

  
 




 S(n)

and

y2  x1=
1 2 3 4 5
1 4 1 1 5

n
n

 
 
 





1 2 3 4 5
1 1 1 1 5

n
n

 
 
 





= 
1 2 3 4 5
1 1 1 1 5

n
n

 
 
 




 = x1  S(n).

Thus y2 is also a S-coidempotent of x1

in S(n). The coidempotents in general in S(n)
for a given S-idempotent is not unique.

However the notion of semi idempotents
and S-semi idempotents in case of rings has
no relevance to semigroups of finite order
under the product operation.

Next the notion of nilpotent elements
and S-nilpotent elements are defined in case
of semigroups. At the outset it is clear that
only semigroups which has zero divisors can
have nilpotent elements. Hence the symmetric
semigroup S(n) has no zero divisors so has no
nilpotents.

Thus the only class of finite non
abstract semigroups which has zero divisors
is the class of semigroups S = {Zn, ×}; n not a
prime number.

74 K. Jayshree, et al.



Definition 2.4: Let S be a semigroup
under product with zero divisors. x  S \
{0}  is said to be a Smarandache nilpotent
element if xn = 0 and there exists a y  S \
{0, x} such that xry = 0 or yxs = 0, r, s, > 0
and ym  0 for any integer m > 1.

First this situation will be described by
some examples.

Example 2.6: Let S = {Z12, } be the
semigroup. Clearl y 62 = 0 (mod 12);
8  S is such that 6  8  0 (mod 12) but 8m 
0 (mod 12) for m > 1 as 83  8 (mod 12). Thus
6 is a S-nilpotent element of S.

Example 2.7: Let S = {Z8, ×} be the
semigroup. S has nilpotents but none of them
are S-nilpotents of S.

For 23  0 (mod 8); 42  0 (mod 8).
There are no S-nilpotents in S.

In view of this one has the following
result:

Proposition 2.4: Let {S, ×} be a
semigroup with nilpotents.
i) Every S-nilpotent element of S is a

nilpotent element of S.
ii) If x is a nilpotent element of S, x need

not in general be S-nilpotent.

Proof: Proof of (i) follows from the
very definition of the S-nilpotent element of S.
Proof of (ii) follows from the above example
2.7 for 2  S = {Z8, ×} is a nilpotent element
of S but 2 is not a S-nilpotent of S.

Example 2.8: Let S = {Z27, ×} be

the semigrouop. 3 is a nilpotent element of S.
6 is a nilpotent element of S. 12 is a nilpotent
element of S. But S has no S-nilpotent elements.

In view of this the following interesting
result is proved:

Theorem 2.3: Let S = { np
Z , }

where p is a prime n  2; S has no S-nilpotent
elements.

Proof: x  S is a nilpotent element if
and only if p / x and xn = (0). Further xt y = 0
if and only if pn–t / y and hence ym = 0 for
some m. Hence it is not possible to find a y
such that ym  0 and xty = 0. Hence the claim.

Corollary 2.1: Let S = { np
Z , }, p

a prime; be a semigroup. Then the nilpotent
elements of S are p, 2p, 3p,…, 1( 1)np p  ).

That is there are  1( 1)np    number of
nilpotents.

Proof: Follows from simple number
theoretic argument.

This is illustrated by an example.

Example 2.9: Let S = { Z35= Z243, }
be a semigroup. The nilpotent elements of S
are 3, 6, 9, 12, 15, 18, 21, 24, …, 240 = (34 –
1)3. Thus there are 34 – 1 number of nilpotents
in S none of them are S-nilpotents of S.

Example 2.10: Let S = {Z510, } be
the semigroup. S has (59 – 1) number of
nilpotents; none of them are S-nilpotents of S.

Thus there exists a class of semigroups
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which has only nilpotent elements and none of
them are S-nilpotents. In fact this class has
infinite number of finite semigroups of the form
S = {Zpn, ×} where 2  n <  and p any prime.
So for a fixed prime; one has infinite number
of such semigroups. Further for the number
of primes is also infinite so this class of
semigroups has undoubtedly infinite cardinality.

3. Conclusion

In this paper for the first time special
elements like Smarandache zero divisors,
Smarandache units, Smarandache idempotents
and Smarandache nilpotnents are introduced
These special elements help in studying the
properties and in characterization of these

semigroups.
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