Star Chromatic and Defining Number of Graphs

D.A.Mojdeh ${ }^{1}$, H.Abdollahzadeh Ahangar ${ }^{2}$, F.Choopani 1 and F.Zeinali ${ }^{1}$
1. Department of Mathematics, University of Tafresh, Tafresh, Iran
2. Department of Basic Science, Babol University of Technology, Babol, I.R. Iran
E-mail: damojdeh@tafreshu.ac.ir, ha.ahangar@nit.ac.ir

Abstract

Let u and v be adjacent vertices in G. If we assign colors to $N[v]$ and $N[u]$ such that the assignment colors to $N[v]$ are different with the assignment colors to $N[u]$, then this colorings is said to be vertex star colorings. In this paper we initiate the study of the star chromatic number and star defining number.

Key Words: Star coloring, star chromatic number, star defining number, Smarandachely Λ-coloring.

AMS(2010): 05C15

$\S 1$ Introduction

In the whole paper, G is a simple graph with vertex set $V(G)$ and edge set $E(G)$ (briefly V and $E)$. For every vertex $v \in V$, the open neighborhood $N(v)$ is the set $\{u \in V \mid u v \in E\}$ and its closed neighborhood is the set $N[v]=N(v) \cup\{v\}$. The open neighborhood of a set $S \subseteq V$ is the set $N(S)=\cup_{v \in S} N(v)$, and the closed neighborhood of S is the set $N[S]=N(S) \cup S$. We use [9] for terminology and notation which are not defined here.

Let Λ be a subgraph of a graph G. A Smarandachely Λ-coloring $\left.\varphi_{\Lambda}\right|_{V(G)}: \mathscr{C} \rightarrow V(G)$ of a graph G by colors in \mathscr{C} is a mapping $\varphi_{\Lambda}: \mathscr{C} \rightarrow V(G) \cup E(G)$ such that $\varphi(u) \neq \varphi(v)$ if u and v are vertices of a subgraph isomorphic to Λ in G. Particularly, if $\Lambda=G$, such a coloring is called a k-coloring of G. A graph is k-colorable if it has a proper k-coloring. The chromatic number $\chi(G)$ is the least k such that G is k-colorable. Let $\chi(G) \leq k \leq|V(G)|$. A set $S \subseteq V(G)$ with an assignment of colors to them is called a defining set of the vertex coloring of G if there exists a unique extension of S to a k-coloring of G. A defining set with minimum cardinality is called a minimum defining set and its cardinality is the defining number, denoted by $d(G, k)$, for more see $[1,3,4,5,6,7]$.

In this note we introduce vertex star coloring of graphs as follows:
If u and v are arbitrary adjacent vertices in G, then the set of colors that we assign to $N[v]$ is different with the set of colors that assign to $N[u]$. We call this vertex coloring as vertex star coloring. It is obvious that vertex star coloring does not include the family of graphs with

[^0]following property:
$\exists u, v \in V(G)$ with $N[v]=N[u]$, for which $u v \in E(G)$.
The chromatic number and defining number of vertex star coloring are called the star chromatic number $\left(\chi^{*}\right)$ and star defining number $\left(d^{*}\right)$, respectively.

We make the following observations:
Observation 1 For every connected graph G of order $n \geqslant 3, \chi^{*}(G) \geq 3$.
Observation 2 If $\chi^{*}(G)=3$, then $|f(N[v])|=2,|f(N[u])|=3$ for every two adjacent vertices $u, v \in V(G)$ for which f is a star coloring function.

Our purpose in this paper is to initiate the study of the star chromatic number and the star defining number $\left(d^{*}\right)$ of cycles, paths and complete bipartite, hyper cube and Cartesian product $P_{n} \times P_{m}$ graphs.

§2. Star Chromatic Numbers

In this section the star chromatic number of cycle, path, complete bipartite and Cartesian product $P_{n} \times P_{m}$ graphs are studied.

First, we present a general result as follows:

Proposition 3 Let G be a graph. Then $\chi^{*}(G)>\chi(G)$.
Proof On the one hand, $\chi^{*}(G) \geq \chi(G)$. On the other hand, it is enough to show that $\chi^{*}(G) \neq \chi(G)$. Suppose to the contrary. First, we increasingly order vertices of G and color the vertex with the least index by 1 . Now, we color the remaining vertices by this manner, i.e: for the next uncolored vertex, we assign an unused color on its neighbors or a new color if be necessary (Greedy algorithm). Hence, a vertex color by $\chi(G)$ such that its neighbors colored by $\{1,2, \cdots, \chi(G)-1\}$. And a vertex color by $\chi(G)-1$ such that its neighbors colored by $\{1,2, \cdots, \chi(G)-2\}$. Without loss of generality, we may assume that u and v are two vertices which colored by $\chi(G)-1$ and $\chi(G)$. It follows that the set $\{1,2, \ldots, \chi(G)\}$ is the used colors on u and its neighbors, and on the vertex v and its neighbors, a contradiction.

Proposition 4 (i) $\chi^{*}\left(C_{n}\right)=3$ where $n=4 m$.
(ii) $\chi^{*}\left(C_{n}\right)=4$ where $n=4 m+2$.

Proof (i) Consider the star coloring function f as follows:

$$
f\left(v_{i}\right)= \begin{cases}2 & i \text { is odd } \\ 1 & i=4 t+2 \\ 3 & i=4 t\end{cases}
$$

It implies that $\chi^{*}(G) \leq 3$. Hence, by Proposition 3 the desired result follows.
(ii) Define the star coloring function f as follows:

$$
f\left(v_{i}\right)= \begin{cases}2 & \mathrm{i} \text { is odd and } i \neq 4 m+1, \\ 3 & i=4 t+2 \text { and } i \leq 4 m, \\ 1 & i=4 t, 4 m+2 \\ 4 & i=4 m+1\end{cases}
$$

It follows that $\chi^{*}(G) \leq 4$. Now, we show that $\chi^{*}(G) \geq 4$. It is easy to check that for any four consecutive vertices in C_{n}, namely $v_{i}, v_{i+1}, v_{i+2}, v_{i+3}$, we have $f\left(v_{i}\right) \neq f\left(v_{i+3}\right)$. Otherwise, a contradiction. Moreover, we must use 3 different colors on any four consecutive vertices. Using the star coloring function f in the proof of Part (i), which implies that the vertex v_{n-1} cannot be colored by 2 . The set of the colors of $v_{4 m+1}$ and its neighbors will be the same as the ones of $v_{4 m+2}$ and its neighbors. Thus, it can be colored by 4 . Hence the desired result follows.

Now, we continue the study of the star chromatic numbers on odd cycle.
Proposition $5 \chi^{*}\left(C_{n}\right)=4$ where $n(\neq 5,7)$ is an odd integer.
Proof For $n=5$, the star coloring function of C_{5} can be defined as follows: $f\left(v_{1}\right)=1$, $f\left(v_{2}\right)=3, f\left(v_{3}\right)=2, f\left(v_{4}\right)=4, f\left(v_{5}\right)=5$.

For $n=7$, the star coloring function of C_{7} can be defined as follows: $f\left(v_{1}\right)=1, f\left(v_{2}\right)=2$, $f\left(v_{3}\right)=1, f\left(v_{4}\right)=3, f\left(v_{5}\right)=4, f\left(v_{6}\right)=3, f\left(v_{7}\right)=5$.

Let $n-1=6 t+4$. Consider the star coloring function f as follows:

$$
f\left(v_{i}\right)= \begin{cases}3 & i=6 t+2, t \geq 1 \text { and } i=1,3, \\ 4 & i=6 t+4, \\ 2 & i=6 t, 2, \\ 1 & i=n \text { and } i \text { is odd and } i \neq 1,3 .\end{cases}
$$

Let $n-1=6 t$. Consider the star coloring function f as follows:

$$
f\left(v_{i}\right)= \begin{cases}3 & i=6 t+2, n, \\ 4 & i=6 t+4, n-1, \\ 2 & i=6 t \text { and } i=1, n-3, \\ 1 & i \text { is odd and } i \neq 1, n .\end{cases}
$$

Let $n-1=6 t+2, n>9$. Consider the star coloring function f as follows:

$$
f\left(v_{i}\right)= \begin{cases}3 & i=6 t+2, t \geq 1 \text { and } i=1,3 \\ 4 & i=6 t+4, n-1, \\ 2 & i=6 t \text { and } i=6 t, 2, \\ 1 & i \text { is odd and } i \neq 1,3 .\end{cases}
$$

Hence, by Proposition 3 and the fact that $\chi\left(C_{n}\right)=3$ for which n is an odd integer, we get that $\chi^{*}(G)=4$.

Proposition 6 (i) $\chi^{*}\left(P_{n}\right)=3$ where n is an odd integer.
(ii) $\chi^{*}\left(P_{n}\right)=4$ where $n \geqslant 4$ is an even integer.

Proof (i) Define the the star coloring function f as follows:

$$
f\left(v_{i}\right)= \begin{cases}2 & i=2 t \\ 1 & i=4 t+1 \\ 3 & i=4 t+3\end{cases}
$$

This completes the proof.
(ii) Using a same fashion star coloring function f in Part (i), but $f\left(v_{n=2 m}\right)=4$. It follows that $\chi^{*}\left(P_{n=2 m}\right) \leq 4$. Now, we consider two cases as follows.

Case 1 If $m=2 t$, then, according to the star coloring function f, let $f\left(v_{2 m-1}\right)=3$. It follows that the vertex $v_{2 m}$ cannot be colored by 2 or 3 . Color the vertex v_{n-1} by 3 , so the vertex v_{n} cannot be colored by 1,2 and 3 . Thus, it can be colored by 4 . Hence the result holds.

Case 2 If $m=2 t+1$, In the same manner in Case 1 settle this case.

Proposition $7 \quad \chi^{*}\left(K_{m, n}\right)=3$.
Proof Let $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ be partite sets of $K_{m, n}$. On the one hand, we may define the star coloring function f as follows: $f\left(v_{i}\right)=1(1 \leq i \leq m)$, $f\left(u_{j}\right)=2(1 \leq j \leq n-1), f\left(u_{n}\right)=3$. Thus $\chi^{*}\left(K_{m, n}\right) \leq 3$. On the other hand, if we use two colors on vertices of complete bipartite graphs, we imply that $N[u]=N[v]$ for every vertex $u \in X$ and $v \in Y$. So $\chi^{*}\left(K_{m, n}\right) \geq 3$. Hence the result holds.

Theorem $8 \quad \chi^{*}\left(P_{n} \times P_{m}\right)=3$.
Proof Let $v_{i j}$ be the vertex in i th row and j th column. Define the star coloring function c^{*} as follows:

$$
c^{*}\left(v_{i j}\right)= \begin{cases}2 & j \equiv 2(\bmod 4) \text { and } i \text { is odd or } j \equiv 3(\bmod 4) \text { and } i \text { is even, } \\ 3 & j \equiv 0(\bmod 4) \text { and } i \text { is odd or } j \equiv 1(\bmod 4) \text { and } i \text { is even, } \\ 1 & \text { o.w. }\end{cases}
$$

Hence the result holds.
The following observation has straightforward proof.
Observation $9 \chi^{*}\left(Q_{k}\right)=3$.

§3. Star Defining Numbers

Proposition $10 d^{*}\left(C_{n}, \chi^{*}\right)=2$ where $n=4 m$.
Proof Let $S=\left\{v_{1}, v_{3}\right\}$ and define the star coloring function f on S as follows: $f\left(v_{1}\right)=1$, $f\left(v_{3}\right)=3$. It is easy to check that the remaining vertices are forced to get one color which implies that $d^{*}\left(C_{n=4 m}, \chi^{*}\right) \leq 2$.

On the other side, it is well-known that $d^{*}\left(C_{n=4 k}, \chi^{*}\right) \geq \chi^{*}(G)-1=2$. This completes the proof.

Now, the star defining numbers of odd paths are studied.

Proposition 11 (i) $d^{*}\left(P_{n}, \chi^{*}\right) \leq m-1$ where $n=2 m$.
(ii) $d^{*}\left(P_{n}, \chi^{*}\right)=2$ where $n=2 m+1$.

Proof (i) We define $S=\left\{v_{i} \mid i=3 t+1\right.$ and $t(>0) t$ is even $\} \cup\left\{v_{i} \mid i=3 t, t=1\right.$ and $t(\geqslant$ $3)$ is odd $\} \cup\left\{v_{i} \mid i=3 t+2\right.$ and t is odd $\}$ with

$$
f\left(v_{i}\right)= \begin{cases}2 & i=3 t \text { and } t=1 \text { and } t \geq 3 \text { and } t \text { is odd } \\ 4 & i=3 t+1 \text { and } t>0 \text { and } t \text { is even } \\ 3 & i=3 t+2 \text { and } t \text { is odd. }\end{cases}
$$

(ii) Define $S=\left\{v_{1}, v_{2}\right\}$ with $f\left(v_{1}\right)=1, f\left(v_{2}\right)=2$. The rest of vertices orderly get colors from $v_{3}, v_{4}, \cdots, v_{2 n+1}$. We know that for every graph $G, d^{*}\left(G, \chi^{*}\right) \geq \chi^{*}-1$. Therefore $d^{*}\left(P_{n}, \chi^{*}\right)=2$ where $n=2 m+1$.

Proposition $12 d^{*}\left(K_{1, n}, \chi^{*}\right)=n$.
Proof Let $X=\left\{x_{1}\right\}$ and $Y=\left\{y_{1}, \cdots, y_{n}\right\}$ be partite sets of $K_{1, n}$. Define $S=Y$ with $f\left(y_{i}\right)=2(1 \leq i \leq n-1), f\left(y_{n}\right)=3$. So $f\left(x_{1}\right)=1$. Thus, $d^{*}\left(K_{1, n}, \chi^{*}\right) \leq n$.

Now, we show that $d^{*}\left(K_{1, n}, \chi^{*}\right) \geq n$. It is easy to check that if we use two colors on $n-1$ vertices of Y, thus one can obtain two different colorings. Hence, $d^{*}\left(K_{1, n}, \chi^{*}\right)=n$.

Proposition $13 d^{*}\left(K_{m, n}, \chi^{*}\right)=m$ where $1<m \leq n$.
Proof Let $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ be partite sets of $K_{m, n}$. We define $S=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ with $f\left(x_{i}\right)=2(1 \leq i \leq m-1), f\left(x_{m}\right)=3$ and get the result $f\left(y_{j}\right)=$ $1(1 \leq j \leq n)$.

Now, we show that $d^{*}\left(K_{m, n}, \chi^{*}=3\right) \geq m$. Suppose that we color $m-1$ vertices of X by two colors, then the remaining vertex of X can be colored by two different colors, a contradiction. Hence the result.

Proposition 14 If $G=K_{m, n}, m \leq n$ and $m>1$ then

$$
d^{*}\left(K_{m, n}, c \geq \chi^{*}+1\right)= \begin{cases}m & c \leq m \\ m+n & c>\max \{m, n\} \\ n & m<c \leq n\end{cases}
$$

Proof The same used manner in Propositions 12 and 13 settles the stated result.

Proposition $15(i) d^{*}\left(P_{3} \times P_{3}\right)=d^{*}\left(P_{3} \times P_{4}\right)=d^{*}\left(P_{3} \times P_{5}\right)=2$.
(ii) $d^{*}\left(P_{2} \times P_{3}\right)=d^{*}\left(P_{2} \times P_{4}\right)=d^{*}\left(P_{2} \times P_{5}\right)=2$.

Proof We know that $d^{*}\left(P_{n} \times P_{m}\right) \geq \chi^{*}\left(P_{n} \times P_{m}\right)-1=3-1=2$. It is enough to
present a star defining set of size 2 for each of these graphs. Define the star defining sets of $P_{2} \times P_{3}, P_{2} \times P_{4}, P_{2} \times P_{5}, P_{3} \times P_{3}, P_{3} \times P_{4}, P_{3} \times P_{5}$, as follows:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
* & 2 & * \\
3 & * & *
\end{array}\right],\left[\begin{array}{llll}
* & * & * & * \\
2 & * & 3 & *
\end{array}\right],\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & 2 & * & 3
\end{array}\right],} \\
& {\left[\begin{array}{ccc}
* & 2 & * \\
3 & * & * \\
* & * & *
\end{array}\right],\left[\begin{array}{llll}
* & * & * & * \\
* & 3 & * & 2 \\
* & * & * & *
\end{array}\right],\left[\begin{array}{lllll}
* & * & * & * & * \\
3 & * & 2 & * & * \\
* & * & * & * & *
\end{array}\right] .}
\end{aligned}
$$

Theorem 16 If n is an even integer and $n / 2 \times\lfloor m / 2\rfloor \neq 1$, then $d^{*}\left(P_{n} \times P_{m}\right) \leq n / 2 \times\lfloor m / 2\rfloor$.
Proof In the following table, a star defining set of size $n / 2 \times\lfloor m / 2\rfloor$ is presented.

$$
\left[\begin{array}{cccccc}
* & 2 & * & 2 & * & \ldots \\
* & * & * & * & * & \ldots \\
* & 3 & * & 3 & * & \ldots \\
* & * & * & * & * & \ldots \\
* & 2 & * & 2 & * & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
* & a & * & a & * & \ldots \\
* & * & * & * & * & \ldots
\end{array}\right]
$$

if $n=4 k+2$, then $a=2$, and if $n=4 k$, then $a=3$.

Conjecture 17 If n is an even number and $n / 2 \times\lfloor m / 2\rfloor \neq 1$, then $d^{*}\left(P_{n} \times P_{m}\right)=n / 2 \times\lfloor m / 2\rfloor$.
Theorem 18 If $m(k+1) \geq 4$, then $d^{*}\left(P_{2 k+1} \times P_{2 m+1}, \chi^{*}\right) \leq m(k+1)-2$.
Proof In the following table, a star defining set of size $m(k+1)-2$ is shown.

$$
\left[\begin{array}{cccccccccc}
* & 2 & * & 2 & * & \ldots & 2 & * & 2 & * \\
* & * & * & * & * & \ldots & * & * & * & * \\
* & 3 & * & 3 & * & \ldots & 3 & * & 3 & * \\
* & * & * & * & * & \ldots & * & * & * & * \\
\vdots & \vdots \\
* & * & * & 3 & * & \ldots & 3 & * & * & *
\end{array}\right]
$$

So, the star defining number is less or equal to this value.

Conjecture 19 If $m(k+1) \geq 4$ and $k \leq m$, then $d^{*}\left(P_{2 k+1} \times P_{2 m+1}, \chi^{*}\right)=m(k+1)-2$.

Theorem 20 If $k \geq 2$, then $d^{*}\left(Q_{k}, 3\right)=2^{k-2}+1$.

Proof First, we show that $d^{*}\left(Q_{k}, \chi^{*}\right) \leq 2^{k-2}+1$. It is well-known that each Q_{k} is 2^{k-3} copies of Q_{3}. We label the vertices of Q_{3} as the following figure:

We define the star defining set as the following matrix for which i th row is dependent to the vertices of i th copy of Q_{3} in Q_{k}. Note that at the defining set of Q_{k}, just one vertex gets color i and the remaining vertices get color j.

$$
\begin{array}{ll}
\text { For } & Q_{3}:\left[\begin{array}{llllllll}
i & * & j & * & * & j & * & *
\end{array}\right] . \\
\text { For } & Q_{4}:\left[\begin{array}{llllllll}
i & * & j & * & * & j & * & * \\
* & j & * & * & * & * & j & *
\end{array}\right] . \\
\text { For } & Q_{5}:\left[\begin{array}{llllllll}
i & * & j & * & * & j & * & * \\
* & j & * & * & * & * & j & * \\
* & j & * & * & * & * & j & * \\
* & * & j & * & * & j & * & *
\end{array}\right] . \\
& Q_{6}:\left[\begin{array}{llllllll}
i & * & j & * & * & j & * & * \\
* & j & * & * & * & * & j & * \\
* & j & * & * & * & * & j & * \\
* & * & j & * & * & j & * & * \\
* & j & * & * & * & * & j & * \\
* & * & j & * & * & j & * & * \\
* & * & j & * & * & j & * & * \\
* & j & * & * & * & * & j & *
\end{array}\right] .
\end{array}
$$

We know that Q_{k} is constructed by two copies of Q_{k-1}. Therefore, we may give a star defining set in general form for the graph as follows: We assign for the first copy as above. For the next copy; if in a row of the first copy we define $* * j * * j * *$, we may define in the symmetric row of the new copy as $* j * * * * j *$, and if in the first copy we define $* j * * * * j *$, we may define in the symmetric row of the next copy we define $* * j * * j * *$. Note that in the first row we have $i * j * * j * *$ but for the its symmetric row in the new copy we define as $* j * * * * j *$.

Now, we show that $d^{*}\left(Q_{k}, \chi^{*}\right) \geq 2^{k-2}+1$. If $k=2$, it is obvious. For completing of the proof, first we show that in each Q_{3} of Q_{k} which colored by three colors i, j, k. Then we have just one way to color of each Q_{3}. Let $c(i)$ be the set of vertices with color i. It is easy to check that $|c(i)|=1,|c(j)|=1$ or $|c(k)|=1$ is not possible. Because, we cannot find a proper star coloring for Q_{k}. Now, let $|c(i)|=2$. We have two cases: (a): $|c(j)|=|c(k)|=3$. By simple verification one can see that this cases also cannot be holden. (b): $|c(j)|=2$ and $|c(k)|=4$ (or symmetrically $|c(k)|=2$ and $|c(j)|=4)$. Hence, we may color the graphs Q_{3}, Q_{4}, Q_{5} and Q_{6} as follows, respectively.

$$
\begin{aligned}
& Q_{3}:\left[\begin{array}{llllllll}
i & k & j & k & k & j & k & i
\end{array}\right] . \\
& Q_{4}:\left[\begin{array}{llllllll}
i & k & j & k & k & j & k & i \\
k & j & k & i & i & k & j & k
\end{array}\right] . \\
& Q_{5}:\left[\begin{array}{llllllll}
i & k & j & k & k & j & k & i \\
k & j & k & i & i & k & j & k \\
k & j & k & i & i & k & j & k \\
i & k & j & k & k & j & k & i
\end{array}\right] . \\
& Q_{6}:\left[\begin{array}{llllllll}
i & k & j & k & k & j & k & i \\
k & j & k & i & i & k & j & k \\
k & j & k & i & i & k & j & k \\
i & k & j & k & k & j & k & i \\
k & j & k & i & i & k & j & k \\
i & k & j & k & k & j & k & i \\
i & k & j & k & k & j & k & i \\
k & j & k & i & i & k & j & k
\end{array}\right] .
\end{aligned}
$$

To color of the graph Q_{k} with $k \geqslant 5$, we should color it by the above method, otherwise we cannot find a proper star coloring for the graph. We may also replace color 2 with 3 , and conversely to find a new proper star coloring of Q_{k}. Let S be a defining set of Q_{k}. It is so easy that $|S| \geqslant 3$ for Q_{3}. It is well-known that the graph Q_{k} with $k \geqslant 3$ containing of 2^{k-3} copies of Q_{3}. Simple verification shows that there exist no copy Q_{3} of Q_{k} such that $S \cap V\left(Q_{3}\right)=1$. Because, it is possible to assign at least two star coloring functions. It follows that $S \cap V\left(Q_{3}^{i}\right) \geqslant 2$ where $2 \leqslant i \leqslant 2^{k-3}$. Hence, the desired result follows.

References

[1] D.Donovan, E.S.Mahmoodian, R.Colin and P.Street, Defining sets in combinatorics: A survey, London Mathematical Society Lecture Note Series, 307(2003).
[2] D.M.Donovan, N.Cavenaghand and A.Khodkar, Minimal defining sets of 1-factorizations of complete graphs, Utilitas Mathematica, 76(2008) 191-211.
[3] E.S.Mahmoodian and E.Mendelsohn, On defining numbers of vertex coloring of regular graphs, Discrete Mathematics, 197/19(1999), 543-554.
[4] E.S.Mahmoodian, R.Naserasr and M.Zaker, Defining sets in vertex colorings of graphs and Latin rectangles, in: 15th British Combinatorial Conference (Stirling, 1995), Discrete Mathematics, 167/168(1997), 451-460.
[5] D.A.Mojdeh, Defining sets in (proper) vertex colorings of the Cartesian product of a cycle with a complete graph, Discussiones Mathematicae. Graph Theory 26(1) (2006), 59-72.
[6] D.A.Mojdeh, On the defining spectrum of k-regular graphs with $k \geqslant 1$ colors, The Journal of Prime Research in Mathematics, 1(1)(2005), 118-135.
[7] D.A.Mojdeh, On the strong defining spectrum of k-regular graphs, Italian Journal of Pure and Applied Mathematics, 23(2007), 161-172.
[8] D.A.Mojdeh, N.Jafari Radand and A.Khodkar, The defining numbers for vertex colorings of certain graphs, Australasian Journal of Combinatorics, 35(2006) 17-30.
[9] D.B.West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.

[^0]: ${ }^{1}$ Received October 28, 2013, Accepted March 6, 2014.
 ${ }^{2}$ Corresponding author: H.A.Ahangar

