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that the assignment colors to N [v] are different with the assignment colors to N [u], then this

colorings is said to be vertex star colorings. In this paper we initiate the study of the star
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§1. Introduction

In the whole paper, G is a simple graph with vertex set V (G) and edge set E(G) (briefly V

and E). For every vertex v ∈ V , the open neighborhood N(v) is the set {u ∈ V | uv ∈ E} and

its closed neighborhood is the set N [v] = N(v) ∪ {v}. The open neighborhood of a set S ⊆ V is

the set N(S) = ∪v∈SN(v), and the closed neighborhood of S is the set N [S] = N(S) ∪ S. We

use [9] for terminology and notation which are not defined here.

Let Λ be a subgraph of a graph G. A Smarandachely Λ-coloring ϕΛ|V (G) : C → V (G) of

a graph G by colors in C is a mapping ϕΛ : C → V (G) ∪ E(G) such that ϕ(u) 6= ϕ(v) if u

and v are vertices of a subgraph isomorphic to Λ in G. Particularly, if Λ = G, such a coloring

is called a k-coloring of G. A graph is k-colorable if it has a proper k-coloring. The chromatic

number χ(G) is the least k such that G is k-colorable. Let χ(G) ≤ k ≤ |V (G)|. A set S ⊆ V (G)

with an assignment of colors to them is called a defining set of the vertex coloring of G if there

exists a unique extension of S to a k-coloring of G. A defining set with minimum cardinality is

called a minimum defining set and its cardinality is the defining number, denoted by d(G, k),

for more see [1, 3, 4, 5, 6, 7].

In this note we introduce vertex star coloring of graphs as follows:

If u and v are arbitrary adjacent vertices in G, then the set of colors that we assign to

N [v] is different with the set of colors that assign to N [u]. We call this vertex coloring as vertex

star coloring. It is obvious that vertex star coloring does not include the family of graphs with
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following property:

∃u, v ∈ V (G) with N [v] = N [u], for which uv ∈ E(G).

The chromatic number and defining number of vertex star coloring are called the star

chromatic number (χ∗) and star defining number (d∗), respectively.

We make the following observations:

Observation 1 For every connected graph G of order n > 3, χ∗(G) ≥ 3.

Observation 2 If χ∗(G) = 3, then |f(N [v])| = 2, |f(N [u])| = 3 for every two adjacent vertices

u, v ∈ V (G) for which f is a star coloring function.

Our purpose in this paper is to initiate the study of the star chromatic number and the

star defining number (d∗) of cycles, paths and complete bipartite, hyper cube and Cartesian

product Pn × Pm graphs.

§2. Star Chromatic Numbers

In this section the star chromatic number of cycle, path, complete bipartite and Cartesian

product Pn × Pm graphs are studied.

First, we present a general result as follows:

Proposition 3 Let G be a graph. Then χ∗(G) > χ(G).

Proof On the one hand, χ∗(G) ≥ χ(G). On the other hand, it is enough to show that

χ∗(G) 6= χ(G). Suppose to the contrary. First, we increasingly order vertices of G and color

the vertex with the least index by 1. Now, we color the remaining vertices by this manner, i.e:

for the next uncolored vertex, we assign an unused color on its neighbors or a new color if be

necessary (Greedy algorithm). Hence, a vertex color by χ(G) such that its neighbors colored

by {1, 2, · · · , χ(G) − 1}. And a vertex color by χ(G) − 1 such that its neighbors colored by

{1, 2, · · · , χ(G) − 2}. Without loss of generality, we may assume that u and v are two vertices

which colored by χ(G) − 1 and χ(G). It follows that the set {1, 2, . . . , χ(G)} is the used colors

on u and its neighbors, and on the vertex v and its neighbors, a contradiction. 2
Proposition 4 (i) χ∗(Cn) = 3 where n = 4m.

(ii) χ∗(Cn) = 4 where n = 4m + 2.

Proof (i) Consider the star coloring function f as follows:

f(vi) =





2 i is odd,

1 i = 4t + 2,

3 i = 4t.

It implies that χ∗(G) ≤ 3. Hence, by Proposition 3 the desired result follows.

(ii) Define the star coloring function f as follows:
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f(vi) =





2 i is odd and i 6= 4m + 1,

3 i = 4t + 2 and i ≤ 4m,

1 i = 4t, 4m + 2,

4 i = 4m + 1.

It follows that χ∗(G) ≤ 4. Now, we show that χ∗(G) ≥ 4. It is easy to check that for any

four consecutive vertices in Cn, namely vi, vi+1, vi+2, vi+3, we have f(vi) 6= f(vi+3). Otherwise,

a contradiction. Moreover, we must use 3 different colors on any four consecutive vertices.

Using the star coloring function f in the proof of Part (i), which implies that the vertex vn−1

cannot be colored by 2. The set of the colors of v4m+1 and its neighbors will be the same as

the ones of v4m+2 and its neighbors. Thus, it can be colored by 4. Hence the desired result

follows. 2
Now, we continue the study of the star chromatic numbers on odd cycle.

Proposition 5 χ∗(Cn) = 4 where n(6= 5, 7) is an odd integer.

Proof For n = 5, the star coloring function of C5 can be defined as follows: f(v1) = 1,

f(v2) = 3, f(v3) = 2, f(v4) = 4, f(v5) = 5.

For n = 7, the star coloring function of C7 can be defined as follows: f(v1) = 1, f(v2) = 2,

f(v3) = 1, f(v4) = 3, f(v5) = 4, f(v6) = 3, f(v7) = 5.

Let n − 1 = 6t + 4. Consider the star coloring function f as follows:

f(vi) =






3 i = 6t + 2, t ≥ 1 and i = 1, 3,

4 i = 6t + 4,

2 i = 6t, 2,

1 i = n and i is odd and i 6= 1, 3.

Let n − 1 = 6t. Consider the star coloring function f as follows:

f(vi) =






3 i = 6t + 2, n,

4 i = 6t + 4, n − 1,

2 i = 6t and i = 1, n− 3,

1 i is odd and i 6= 1, n.

Let n − 1 = 6t + 2, n > 9. Consider the star coloring function f as follows:

f(vi) =





3 i = 6t + 2, t ≥ 1 and i = 1, 3

4 i = 6t + 4, n − 1,

2 i = 6t and i = 6t, 2,

1 i is odd and i 6= 1, 3.

Hence, by Proposition 3 and the fact that χ(Cn) = 3 for which n is an odd integer, we get

that χ∗(G) = 4. 2
Proposition 6 (i) χ∗(Pn) = 3 where n is an odd integer.
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(ii) χ∗(Pn) = 4 where n > 4 is an even integer.

Proof (i) Define the the star coloring function f as follows:

f(vi) =





2 i = 2t,

1 i = 4t + 1,

3 i = 4t + 3.

This completes the proof.

(ii) Using a same fashion star coloring function f in Part (i), but f(vn=2m) = 4. It follows

that χ∗(Pn=2m) ≤ 4. Now, we consider two cases as follows.

Case 1 If m = 2t, then, according to the star coloring function f , let f(v2m−1) = 3. It follows

that the vertex v2m cannot be colored by 2 or 3. Color the vertex vn−1 by 3, so the vertex vn

cannot be colored by 1, 2 and 3. Thus, it can be colored by 4. Hence the result holds.

Case 2 If m = 2t + 1, In the same manner in Case 1 settle this case. 2
Proposition 7 χ∗(Km,n) = 3.

Proof Let X = {x1, . . . , xm} and Y = {y1, . . . , yn} be partite sets of Km,n. On the

one hand, we may define the star coloring function f as follows: f(vi) = 1(1 ≤ i ≤ m),

f(uj) = 2 (1 ≤ j ≤ n − 1), f(un) = 3. Thus χ∗(Km,n) ≤ 3. On the other hand, if we use

two colors on vertices of complete bipartite graphs, we imply that N [u] = N [v] for every vertex

u ∈ X and v ∈ Y . So χ∗(Km,n) ≥ 3. Hence the result holds. 2
Theorem 8 χ∗(Pn × Pm) = 3.

Proof Let vij be the vertex in ith row and jth column. Define the star coloring function

c∗ as follows:

c∗(vij) =





2 j ≡ 2 (mod 4) and i is odd or j ≡ 3 (mod 4) and i is even,

3 j ≡ 0 (mod 4) and i is odd or j ≡ 1 (mod 4) and i is even,

1 o.w.

Hence the result holds. 2
The following observation has straightforward proof.

Observation 9 χ∗(Qk) = 3.

§3. Star Defining Numbers

Proposition 10 d∗(Cn, χ∗) = 2 where n = 4m.

Proof Let S = {v1, v3} and define the star coloring function f on S as follows: f(v1) = 1,

f(v3) = 3. It is easy to check that the remaining vertices are forced to get one color which

implies that d∗(Cn=4m, χ∗) ≤ 2.
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On the other side, it is well-known that d∗(Cn=4k, χ∗) ≥ χ∗(G) − 1 = 2. This completes

the proof. 2
Now, the star defining numbers of odd paths are studied.

Proposition 11 (i) d∗(Pn, χ∗) ≤ m − 1 where n = 2m.

(ii) d∗(Pn, χ∗) = 2 where n = 2m + 1.

Proof (i) We define S = {vi|i = 3t + 1 and t(> 0) t is even} ∪ {vi|i = 3t, t = 1 and t(>

3) is odd} ∪ {vi|i = 3t + 2 and t is odd} with

f(vi) =





2 i = 3t and t = 1 and t ≥ 3 and t is odd,

4 i = 3t + 1 and t > 0 and t is even,

3 i = 3t + 2 and t is odd.

(ii) Define S = {v1, v2} with f(v1) = 1, f(v2) = 2. The rest of vertices orderly get colors

from v3, v4, · · · , v2n+1. We know that for every graph G, d∗(G, χ∗) ≥ χ∗ − 1. Therefore

d∗(Pn, χ∗) = 2 where n = 2m + 1. 2
Proposition 12 d∗(K1,n, χ∗) = n.

Proof Let X = {x1} and Y = {y1, · · · , yn} be partite sets of K1,n. Define S = Y with

f(yi) = 2 (1 ≤ i ≤ n − 1), f(yn) = 3. So f(x1) = 1. Thus, d∗(K1,n, χ∗) ≤ n.

Now, we show that d∗(K1,n, χ∗) ≥ n. It is easy to check that if we use two colors on n− 1

vertices of Y , thus one can obtain two different colorings. Hence, d∗(K1,n, χ∗) = n. 2
Proposition 13 d∗(Km,n, χ∗) = m where 1 < m ≤ n.

Proof Let X = {x1, . . . , xm} and Y = {y1, . . . , yn} be partite sets of Km,n. We define

S = {x1, x2, . . . , xm} with f(xi) = 2 (1 ≤ i ≤ m − 1), f(xm) = 3 and get the result f(yj) =

1 (1 ≤ j ≤ n).

Now, we show that d∗(Km,n, χ∗ = 3) ≥ m. Suppose that we color m − 1 vertices of

X by two colors, then the remaining vertex of X can be colored by two different colors, a

contradiction. Hence the result. 2
Proposition 14 If G = Km,n, m ≤ n and m > 1 then

d∗(Km,n, c ≥ χ∗ + 1) =






m c ≤ m,

m + n c > max{m, n},
n m < c ≤ n.

Proof The same used manner in Propositions 12 and 13 settles the stated result. 2
Proposition 15 (i) d∗(P3 × P3) = d∗(P3 × P4) = d∗(P3 × P5) = 2.

(ii) d∗(P2 × P3) = d∗(P2 × P4) = d∗(P2 × P5) = 2.

Proof We know that d∗(Pn × Pm) ≥ χ∗(Pn × Pm) − 1 = 3 − 1 = 2. It is enough to
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present a star defining set of size 2 for each of these graphs. Define the star defining sets of

P2 × P3, P2 × P4, P2 × P5, P3 × P3, P3 × P4, P3 × P5, as follows:

 ∗ 2 ∗

3 ∗ ∗


,


 ∗ ∗ ∗ ∗

2 ∗ 3 ∗


,


 ∗ ∗ ∗ ∗ ∗

∗ ∗ 2 ∗ 3


,




∗ 2 ∗
3 ∗ ∗
∗ ∗ ∗


,




∗ ∗ ∗ ∗
∗ 3 ∗ 2

∗ ∗ ∗ ∗


,




∗ ∗ ∗ ∗ ∗
3 ∗ 2 ∗ ∗
∗ ∗ ∗ ∗ ∗


. 2

Theorem 16 If n is an even integer and n/2× ⌊m/2⌋ 6= 1, then d∗(Pn ×Pm) ≤ n/2× ⌊m/2⌋.

Proof In the following table, a star defining set of size n/2 × ⌊m/2⌋ is presented.




∗ 2 ∗ 2 ∗ . . .

∗ ∗ ∗ ∗ ∗ . . .

∗ 3 ∗ 3 ∗ . . .

∗ ∗ ∗ ∗ ∗ . . .

∗ 2 ∗ 2 ∗ . . .
...

...
...

...
...

...

∗ a ∗ a ∗ . . .

∗ ∗ ∗ ∗ ∗ . . .




if n = 4k + 2, then a = 2, and if n = 4k, then a = 3. 2
Conjecture 17 If n is an even number and n/2×⌊m/2⌋ 6= 1, then d∗(Pn×Pm) = n/2×⌊m/2⌋.

Theorem 18 If m(k + 1) ≥ 4, then d∗(P2k+1 × P2m+1, χ
∗) ≤ m(k + 1) − 2.

Proof In the following table, a star defining set of size m(k + 1) − 2 is shown.




∗ 2 ∗ 2 ∗ . . . 2 ∗ 2 ∗
∗ ∗ ∗ ∗ ∗ . . . ∗ ∗ ∗ ∗
∗ 3 ∗ 3 ∗ . . . 3 ∗ 3 ∗
∗ ∗ ∗ ∗ ∗ . . . ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

...
...

...

∗ ∗ ∗ 3 ∗ . . . 3 ∗ ∗ ∗




So, the star defining number is less or equal to this value. 2
Conjecture 19 If m(k + 1) ≥ 4 and k ≤ m, then d∗(P2k+1 × P2m+1, χ

∗) = m(k + 1) − 2.
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Theorem 20 If k ≥ 2, then d∗(Qk, 3) = 2k−2 + 1.

Proof First, we show that d∗(Qk, χ∗) ≤ 2k−2 + 1. It is well-known that each Qk is 2k−3

copies of Q3. We label the vertices of Q3 as the following figure:

x1

x4

x5

x8

x2

x3

x6

x7

We define the star defining set as the following matrix for which ith row is dependent to

the vertices of ith copy of Q3 in Qk. Note that at the defining set of Qk, just one vertex gets

color i and the remaining vertices get color j.

For Q3 :
[

i ∗ j ∗ ∗ .j ∗ ∗
]
.

For Q4 :



 i ∗ j ∗ ∗ j ∗ ∗
∗ j ∗ ∗ ∗ ∗ j ∗



 .

For Q5 :




i ∗ j ∗ ∗ j ∗ ∗
∗ j ∗ ∗ ∗ ∗ j ∗
∗ j ∗ ∗ ∗ ∗ j ∗
∗ ∗ j ∗ ∗ j ∗ ∗




.

For Q6 :




i ∗ j ∗ ∗ j ∗ ∗
∗ j ∗ ∗ ∗ ∗ j ∗
∗ j ∗ ∗ ∗ ∗ j ∗
∗ ∗ j ∗ ∗ j ∗ ∗
∗ j ∗ ∗ ∗ ∗ j ∗
∗ ∗ j ∗ ∗ j ∗ ∗
∗ ∗ j ∗ ∗ j ∗ ∗
∗ j ∗ ∗ ∗ ∗ j ∗




.
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We know that Qk is constructed by two copies of Qk−1. Therefore, we may give a star

defining set in general form for the graph as follows: We assign for the first copy as above.

For the next copy; if in a row of the first copy we define ∗ ∗ j ∗ ∗ j ∗ ∗, we may define

in the symmetric row of the new copy as ∗ j ∗ ∗ ∗ ∗ j ∗, and if in the first copy we define

∗ j ∗ ∗ ∗ ∗ j ∗, we may define in the symmetric row of the next copy we define ∗ ∗ j ∗ ∗ j ∗ ∗.
Note that in the first row we have i ∗ j ∗ ∗ j ∗ ∗ but for the its symmetric row in the new

copy we define as ∗ j ∗ ∗ ∗ ∗ j ∗.

Now, we show that d∗(Qk, χ∗) ≥ 2k−2 + 1. If k = 2, it is obvious. For completing of the

proof, first we show that in each Q3 of Qk which colored by three colors i, j, k. Then we have

just one way to color of each Q3. Let c(i) be the set of vertices with color i. It is easy to check

that |c(i)| = 1, |c(j)| = 1 or |c(k)| = 1 is not possible. Because, we cannot find a proper star

coloring for Qk. Now, let |c(i)| = 2. We have two cases: (a): |c(j)| = |c(k)| = 3. By simple

verification one can see that this cases also cannot be holden. (b): |c(j)| = 2 and |c(k)| = 4 (or

symmetrically |c(k)| = 2 and |c(j)| = 4 ). Hence, we may color the graphs Q3, Q4, Q5 and Q6

as follows, respectively.

Q3 :
[

i k j k k j k i
]
.

Q4 :


 i k j k k j k i

k j k i i k j k


 .

Q5 :




i k j k k j k i

k j k i i k j k

k j k i i k j k

i k j k k j k i




.

Q6 :




i k j k k j k i

k j k i i k j k

k j k i i k j k

i k j k k j k i

k j k i i k j k

i k j k k j k i

i k j k k j k i

k j k i i k j k




.

To color of the graph Qk with k > 5, we should color it by the above method, otherwise

we cannot find a proper star coloring for the graph. We may also replace color 2 with 3, and

conversely to find a new proper star coloring of Qk. Let S be a defining set of Qk. It is so easy

that |S| > 3 for Q3. It is well-known that the graph Qk with k > 3 containing of 2k−3 copies

of Q3. Simple verification shows that there exist no copy Q3 of Qk such that S ∩ V (Q3) = 1.

Because, it is possible to assign at least two star coloring functions. It follows that S∩V (Qi
3) > 2

where 2 6 i 6 2k−3. Hence, the desired result follows. 2
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