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Abstract

The concept of Smarandache Bryant Schneider Group of a Smarandache loop is
introduced. Relationship(s) between the Bryant Schneider Group and the Smarandache
Bryant Schneider Group of an S-loop are discovered and the later is found to be useful
in finding Smarandache isotopy-isomorphy condition(s) in S-loops just like the formal is
useful in finding isotopy-isomorphy condition(s) in loops. Some properties of the Bryant
Schneider Group of a loop are shown to be true for the Smarandache Bryant Schneider
Group of a Smarandache loop. Some interesting and useful cardinality formulas are
also established for a type of finite Smarandache loop

1 Introduction

The study of Smarandache loops was initiated by W. B. Vasantha Kandasamy in 2002.
In her book [16], she defined a Smarandache loop (S-loop) as a loop with at least a subloop
which forms a subgroup under the binary operation of the loop. For more on loops and their
properties, readers should check [14], [3], [5], [7], [8] and [16]. In her book, she introduced
over 75 Smarandache concepts in loops but the concept Smarandache Bryant Schneider
Group which is to be studied here for the first time is not among. In her first paper [17], she
introduced some types of Smarandache loops. The present author has contributed to the
study of S-quasigroups and S-loops in [9], [10] and [11] while Muktibodh [13] did a study on
the first.

Robinson [15] introduced the idea of Bryant-Schneider group of a loop because its im-
portance and motivation stem from the work of Bryant and Schneider [4]. Since the advent
of the Bryant-Schneider group, some studies by Adeniran [1], [2] and Chiboka [6] have been
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done on it relative to CC-loops, C-loops and extra loops after Robinson [15] studied the
Bryant-Schneider group of a Bol loop. The judicious use of it was earlier predicted by
Robinson [15]. As mentioned in [Section 5, Robinson [15]], the Bryant-Schneider group of a
loop is extremely useful in investigating isotopy-isomorphy condition(s) in loops.

In this study, the concept of Smarandache Bryant Schneider Group of a Smarandache loop
is introduced. Relationship(s) between the Bryant Schneider Group and the Smarandache
Bryant Schneider Group of an S-loop are discovered and the later is found to be useful in
finding Smarandache isotopy-isomorphy condition(s) in S-loops just like the formal is useful
in finding isotopy-isomorphy condition(s) in loops. Some properties of the Bryant Schneider
Group of a loop are shown to be true for the Smarandache Bryant Schneider Group of a
Smarandache loop. Some interesting and useful cardinality formulas are also established for
a type of finite Smarandache loop. But first, we state some important definitions.

2 Definitions and Notations

Definition 2.1 Let L be a non-empty set. Define a binary operation (·) on L : If
x · y ∈ L ∀ x, y ∈ L, (L, ·) is called a groupoid. If the system of equations ; a · x = b and
y · a = b have unique solutions for x and y respectively, then (L, ·) is called a quasigroup.
Furthermore, if there exists a unique element e ∈ L called the identity element such that
∀ x ∈ L, x · e = e · x = x, (L, ·) is called a loop.

Furthermore, if there exist at least a non-empty subset M of L such that (M, ·) is a non-
trivial subgroup of (L, ·), then L is called a Smarandache loop(S-loop) with Smarandache
subgroup(S-subgroup) M .

The set SY M(L, ·) = SY M(L) of all bijections in a loop (L, ·) forms a group called the
permutation(symmetric) group of the loop (L, ·). The triple (U, V, W ) such that U, V, W ∈
SY M(L, ·) is called an autotopism of L if and only if xU ·yV = (x·y)W ∀ x, y ∈ L. The group
of autotopisms(under componentwise multiplication([14]) of L is denoted by AUT (L, ·). If
U = V = W , then the group AUM(L, ·) = AUM(L) formed by such U ’s is called the
automorphism group of (L, ·). If L is an S-loop with an arbitrary S-subgroup H, then the
group SSY M(L, ·) = SSY M(L) formed by all θ ∈ SY M(L) such that hθ ∈ H ∀ h ∈ H is
called the Smarandache permutation(symmetric) group of L. Hence, the group SA(L, ·) =
SA(L) formed by all θ ∈ SSY M(L) ∩ AUM(L) is called the Smarandache automorphism
group of L.

Let (G, ·) be a loop. The bijection Lx : G −→ G defined as yLx = x · y ∀ x, y ∈ G is
called a left translation(multiplication) of G while the bijection Rx : G −→ G defined as
yRx = y · x ∀ x, y ∈ G is called a right translation(multiplication) of G.

Definition 2.2 (Robinson [15])
Let (G, ·) be a loop. A mapping θ ∈ SY M(G, ·) is a special map for G means that there

exist f, g ∈ G so that (θR−1
g , θL−1

f , θ) ∈ AUT (G, ·).
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Definition 2.3 Let (G, ·) be a Smarandache loop with S-subgroup (H, ·). A mapping θ ∈
SSY M(G, ·) is a Smarandache special map(S-special map) for G if and only if there exist
f, g ∈ H such that (θR−1

g , θL−1
f , θ) ∈ AUT (G, ·).

Definition 2.4 (Robinson [15])
Let the set

BS(G, ·) = {θ ∈ SY M(G, ·) : ∃ f, g ∈ G 3 (θR−1
g , θL−1

f , θ) ∈ AUT (G, ·)}

i.e the set of all special maps in a loop, then BS(G, ·) ≤ SY M(G, ·) is called the Bryant-
Schneider group of the loop (G, ·).

Definition 2.5 Let the set

SBS(G, ·) = {θ ∈ SSY M(G, ·) : there exist f, g ∈ H 3 (θR−1
g , θL−1

f , θ) ∈ AUT (G, ·)}

i.e the set of all S-special maps in a S-loop, then SBS(G, ·) is called the Smarandache
Bryant-Schneider group(SBS group) of the S-loop (G, ·) with S-subgroup H if SBS(G, ·) ≤
SY M(G, ·).

Definition 2.6 The triple φ = (Rg, Lf , I) is called an f, g-principal isotopism of a loop
(G, ·) onto a loop (G, ◦) if and only if

x · y = xRg ◦ yLf ∀ x, y ∈ G or x ◦ y = xR−1
g · yL−1

f ∀ x, y ∈ G.

f and g are called translation elements of G or at times written in the pair form (g, f),
while (G, ◦) is called an f, g-principal isotope of (G, ·).

On the other hand, (G,⊗) is called a Smarandache f, g-principal isotope of (G,⊕) if for
some f, g ∈ S,

xRg ⊗ yLf = (x⊕ y) ∀ x, y ∈ G

where (S,⊕) is a S-subgroup of (G,⊕). In these cases, f and g are called Smarandache
elements(S-elements).

Let (L, ·) and (G, ◦) be S-loops with S-subgroups L′ and G′ respectively such that xA ∈
G′ ∀ x ∈ L′, where A : (L, ·) −→ (G, ◦). Then the mapping A is called a Smarandache
isomorphism if (L, ·) ∼= (G, ◦), hence we write (L, ·) % (G, ◦). An S-loop (L, ·) is called a
G-Smarandache loop(GS-loop) if and only if (L, ·) % (G, ◦) for all S-loop isotopes (G, ◦) of
(L, ·).

Definition 2.7 Let (G, ·) be a Smarandache loop with an S-subgroup H.

Ω(G, ·) =
{

(θR−1
g , θL−1

f , θ) ∈ AUT (G, ·) for some f, g ∈ H : hθ ∈ H ∀ h ∈ H
}
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3 Main Results

The Smarandache Bryant Schneider Group

Theorem 3.1 Let (G, ·) be a Smarandache loop. SBS(G, ·) ≤ BS(G, ·).

Proof
Let (G, ·) be an S-loop with S-subgroup H. Comparing Definition 2.4 and Definition 2.5,
it can easily be observed that SBS(G, ·) ⊂ BS(G, ·). The case SBS(G, ·) ⊆ BS(G, ·) is
possible when G = H where H is the S-subgroup of G but this will be a contradiction since
G is an S-loop.

Identity If I is the identity mapping on G, then hI = h ∈ H ∀ h ∈ H and there exists e ∈ H
where e is the identity element in G such that (IR−1

e , IL−1
e , I) = (I, I, I) ∈ AUT (G, ·).

So, I ∈ SBS(G, ·). Thus SBS(G, ·) is non-empty.

Closure and Inverse Let α, β ∈ SBS(G, ·). Then there exist f1, g1, f2, g2 ∈ H such that

A = (αR−1
g1

, αL−1
f1

, α), B = (βR−1
g2

, βL−1
f2

, β) ∈ AUT (G, ·).

AB−1 = (αR−1
g1

, αL−1
f1

, α)(Rg2β
−1, Lf2β

−1, β−1)

= (αR−1
g1

Rg2β
−1, αL−1

f1
Lf2β

−1, αβ−1) ∈ AUT (G, ·).
Let δ = βR−1

g1
Rg2β

−1 and γ = βL−1
f1

Lf2β
−1. Then,

(αβ−1δ, αβ−1γ, αβ−1) ∈ AUT (G, ·) ⇔ (xαβ−1δ) · (yαβ−1γ) = (x · y)αβ−1 ∀ x, y ∈ G.

Putting y = e and replacing x by xβα−1, we have (xδ) · (eαβ−1γ) = x for all x ∈ G.
Similarly, putting x = e and replacing y by yβα−1, we have (eαβ−1δ) · (yγ) = y for all
y ∈ G. Thence, xδR(eαβ−1γ) = x and yγL(eαβ−1δ) = y which implies that

δ = R−1
(eαβ−1γ) and γ = L−1

(eαβ−1δ).

Thus, since g = eαβ−1γ, f = eαβ−1δ ∈ H then

AB−1 = (αβ−1R−1
g , αβ−1L−1

f , αβ−1) ∈ AUT (G, ·) ⇔ αβ−1 ∈ SBS(G, ·).

∴ SBS(G, ·) ≤ BS(G, ·).

Corollary 3.1 Let (G, ·) be a Smarandache loop. Then, SBS(G, ·) ≤ SSY M(G, ·) ≤
SY M(G, ·). Hence, SBS(G, ·) is the Smarandache Bryant-Schneider group(SBS group) of
the S-loop (G, ·).
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Proof
Although the fact that SBS(G, ·) ≤ SY M(G, ·) follows from Theorem 3.1 and the fact in
[Theorem 1, [15]] that BS(G, ·) ≤ SY M(G, ·). Nevertheless, it can also be traced from the
facts that SBS(G, ·) ≤ SSY M(G, ·) and SSY M(G, ·) ≤ SY M(G, ·).

It is easy to see that SSY M(G, ·) ⊂ SY M(G, ·) and that SBS(G, ·) ⊂ SSY M(G, ·) while
the trivial cases SSY M(G, ·) ⊆ SY M(G, ·) and SBS(G, ·) ⊆ SSY M(G, ·) will contradict
the fact that G is an S-loop because these two are possible if the S-subgroup H is G.
Reasoning through the axioms of a group, it is easy to show that SSY M(G, ·) ≤ SY M(G, ·).
By using the same steps in Theorem 3.1, it will be seen that SBS(G, ·) ≤ SSY M(G, ·).

The SBS Group of a Smarandache f, g-principal isotope

Theorem 3.2 Let (G, ·) be a S-loop with a Smarandache f, g-principal isotope (G, ◦). Then,
(G, ◦) is an S-loop.

Proof
Let (G, ·) be an S-loop, then there exist an S-subgroup (H, ·) of G. If (G, ◦) is a Smarandache
f, g-principal isotope of (G, ·), then

x · y = xRg ◦ yLf ∀ x, y ∈ G which implies x ◦ y = xR−1
g · yL−1

f ∀ x, y ∈ G

where f, g ∈ H. So

h1 ◦ h2 = h1R
−1
g · h2L

−1
f ∀ h1, h2 ∈ H for some f, g ∈ H.

Let us now consider the set H under the operation ”◦”. That is the pair (H, ◦).
Groupoid Since f, g ∈ H, then by the definition h1 ◦ h2 = h1R

−1
g · h2L

−1
f , h1 ◦ h2 ∈

H ∀ h1, h2 ∈ H since (H, ·) is a groupoid. Thus, (H, ◦) is a groupoid.

Quasigroup With the definition h1 ◦h2 = h1R
−1
g ·h2L

−1
f ∀ h1, h2 ∈ H, it is clear that (H, ◦)

is a quasigroup since (H, ·) is a quasigroup.

Loop It can easily be seen that f · g is an identity element in (H, ◦). So, (H, ◦) is a loop.

Group Since (H, ·) is a associative, it is easy to show that (H, ◦) is associative.

Hence, (H, ◦) is an S-subgroup in (G, ◦) since the latter is a loop(a quasigroup with identity
element f · g). Therefore, (G, ◦) is an S-loop.

Theorem 3.3 Let (G, ·) be a Smarandache loop with an S-subgroup (H, ·). A mapping
θ ∈ SY M(G, ·) is a S-special map if and only if θ is an S-isomorphism of (G, ·) onto some
Smarandache f, g-principal isotopes (G, ◦) where f, g ∈ H.

5



Proof
By Definition 2.3, a mapping θ ∈ SSY M(G) is a S-special map implies there exist f, g ∈ H
such that (θR−1

g , θL−1
f , θ) ∈ AUT (G, ·). It can be observed that

(θR−1
g , θL−1

f , θ) = (θ, θ, θ)(R−1
g , L−1

f , I) ∈ AUT (G, ·).
But since (R−1

g , L−1
f , I) : (G, ◦) −→ (G, ·) then for (θR−1

g , θL−1
f , θ) ∈ AUT (G, ·) we must

have (θ, θ, θ) : (G, ·) −→ (G, ◦) which means (G, ·) ∼=θ
(G, ◦), hence (G, ·) %θ

(G, ◦) because
(H, ·)θ = (H, ◦). (Rg, Lf , I) : (G, ·) −→ (G, ◦) is an f, g-principal isotopism so (G, ◦) is a
Smarandache f, g-principal isotope of (G, ·) by Theorem 3.2.

Conversely, if θ is an S-isomorphism of (G, ·) onto some Smarandache f, g-principal
isotopes (G, ◦) where f, g ∈ H such that (H, ·) is a S-subgroup of (G, ·) means
(θ, θ, θ) : (G, ·) −→ (G, ◦), (Rg, Lf , I) : (G, ·) −→ (G, ◦) which implies
(R−1

g , L−1
f , I) : (G, ◦) −→ (G, ·) and (H, ·)θ = (H, ◦). Thus, (θR−1

g , θL−1
f , θ) ∈ AUT (G, ·).

Therefore, θ is a S-special map because f, g ∈ H.

Corollary 3.2 Let (G, ·) be a Smarandache loop with a an S-subgroup (H, ·). A mapping
θ ∈ SBS(G, ·) if and only if θ is an S-isomorphism of (G, ·) onto some Smarandache f, g-
principal isotopes (G, ◦) such that f, g ∈ H where (H, ·) is an S-subgroup of (G, ·).
Proof
This follows from Definition 2.5 and Theorem 3.3.

Theorem 3.4 Let (G, ·) and (G, ◦) be S-loops. (G, ◦) is a Smarandache f, g-principal iso-
tope of (G, ·) if and only if (G, ·) is a Smarandache g, f -principal isotope of (G, ◦).
Proof
Let (G, ·) and (G, ◦) be S-loops such that if (H, ·) is an S-subgroup in (G, ·), then (H, ◦)
is an S-subgroup of (G, ◦). The left and right translation maps relative to an element x in
(G, ◦) shall be denoted by Lx and Rx respectively.

If (G, ◦) is a Smarandache f, g-principal isotope of (G, ·) then, x·y = xRg◦yLf ∀ x, y ∈ G
for some f, g ∈ H. Thus, xRy = xRgRyLf

and yLx = yLfLxRg x, y ∈ G and we have Ry =

RgRyLf
and Lx = LfLxRg x, y ∈ G. So, Ry = R−1

g RyL−1
f

and Lx = L−1
f LxR−1

g
= x, y ∈ G.

Putting y = f and x = g respectively, we now get Rf = R−1
g RfL−1

f
= R−1

g and Lg =

L−1
f LgR−1

g
= L−1

f . That is, Rf = R−1
g and Lg = L−1

f for some f, g ∈ H.
Recall that

x · y = xRg ◦ yLf ∀ x, y ∈ G ⇔ x ◦ y = xR−1
g · yL−1

f ∀ x, y ∈ G.

So using the last two translation equations,

x ◦ y = xRf · yLg ∀ x, y ∈ G ⇔ the triple (Rf ,Lg, I) : (G, ◦) −→ (G, ·)
is a Smarandache g, f -principal isotopism. Therefore, (G, ·) is a Smarandache g, f -principal
isotope of (G, ◦).

The proof of the converse is achieved by doing the reverse of the procedure described
above.
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Theorem 3.5 If (G, ·) is an S-loop with a Smarandache f, g-principal isotope (G, ◦), then
SBS(G, ·) = SBS(G, ◦).
Proof
Let (G, ◦) be the Smarandache f, g-principal isotope of the S-loop (G, ·) with S-subgroup
(H, ·). By Theorem 3.2, (G, ◦) is an S-loop with S-subgroup (H, ◦). The left and right
translation maps relative to an element x in (G, ◦) shall be denoted by Lx andRx respectively.

Let α ∈ SBS(G, ·), then there exist f1, g1 ∈ H so that (αR−1
g1

, αL−1
f1

, α) ∈ AUT (G, ·).
Recall that the triple (Rg1 , Lf1 , I) : (G, ·) −→ (G, ◦) is a Smarandache f, g-principal
isotopism, so x · y = xRg ◦ yLf ∀ x, y ∈ G and this implies

Rx = RgRxLf
and Lx = LfLxRg ∀ x ∈ G which also implies that

RxLf
= R−1

g Rx and LxRg = L−1
f Lx ∀ x ∈ G which finally gives

Rx = R−1
g RxL−1

f
and Lx = L−1

f LxR−1
g
∀ x ∈ G.

Set f2 = fαR−1
g1

Rg and g2 = gαL−1
f1

Lf . Then

Rg2 = R−1
g RgαL−1

f1
Lf L−1

f
= R−1

g RgαL−1
f1

(1)

and Lf2 = L−1
f LfαR−1

g1
RgR−1

g
= L−1

f LfαR−1
g1
∀ x ∈ G. (2)

Since, (αR−1
g1

, αL−1
f1

, α) ∈ AUT (G, ·), then

(xαR−1
g1

) · (yαL−1
f1

) = (x · y)α ∀ x, y ∈ G. (3)

Putting y = g and x = f separately in the last equation,

xαR−1
g1

R(gαL−1
f1

) = xRgα and yαL−1
f1

L(fαR−1
g1

) = yLfα ∀ x, y ∈ G.

Thus by applying (1) and (2), we now have

αR−1
g1

= RgαR−1

(gαL−1
f1

)
= RgαR−1

g2
R−1

g and αL−1
f1

= LfαL−1

(fαR−1
g1

)
= LfαL−1

f2
L−1

f . (4)

We shall now compute (x ◦ y)α by (3) and (4) and then see the outcome.
(x ◦ y)α = (xR−1

g · yL−1
f )α = xR−1

g αR−1
g1

· yL−1
f αL−1

f1
= xR−1

g RgαR−1
g2

R−1
g ·

yL−1
f LfαL−1

f2
L−1

f = xαR−1
g2

R−1
g · yαL−1

f2
L−1

f = xαR−1
g2
◦ yαL−1

f2
∀ x, y ∈ G.

Thus,

(x ◦ y)α = xαR−1
g2
◦ yαL−1

f2
∀ x, y ∈ G ⇔ (αR−1

g2
, αL−1

f2
, α) ∈ AUT (G, ◦) ⇔ α ∈ SBS(G, ◦).

Whence, SBS(G, ·) ⊆ SBS(G, ◦).

Since (G, ◦) is the Smarandache f, g-principal isotope of the S-loop (G, ·), then by The-
orem 3.4, (G, ·) is the Smarandache g, f -principal isotope of (G, ◦). So following the steps
above, it can similarly be shown that SBS(G, ◦) ⊆ SBS(G, ·). Therefore, the conclusion
that SBS(G, ·) = SBS(G, ◦) follows.
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Cardinality Formulas

Theorem 3.6 Let (G, ·) be a finite Smarandache loop with n distinct S-subgroups. If the
SBS group of (G, ·) relative to an S-subgroup (Hi, ·) is denoted by SBSi(G, ·), then

|BS(G, ·)| = 1

n

n∑
i=1

|SBSi(G, ·)| [BS(G, ·) : SBSi(G, ·)].

Proof
Let the n distinct S-subgroups of G be denoted by Hi, i = 1, 2, · · ·n. Note here that
Hi 6= Hj ∀ i, j = 1, 2, · · ·n. By Theorem 3.1, SBSi(G, ·) ≤ BS(G, ·) ∀ i = 1, 2, · · ·n. Hence,
by the Lagrange’s theorem of classical group theory,

|BS(G, ·)| = |SBSi(G, ·)| [BS(G, ·) : SBSi(G, ·)] ∀ i = 1, 2, · · ·n.

Thus, adding the equation above for all i = 1, 2, · · ·n, we get

n|BS(G, ·)| =
n∑

i=1

|SBSi(G, ·)| [BS(G, ·) : SBSi(G, ·)] ∀ i = 1, 2, · · ·n, thence,

|BS(G, ·)| = 1

n

n∑
i=1

|SBSi(G, ·)| [BS(G, ·) : SBSi(G, ·)].

Theorem 3.7 Let (G, ·) be a Smarandache loop. Then, Ω(G, ·) ≤ AUT (G, ·).
Proof
Let (G, ·) be an S-loop with S-subgroup H. By Definition 2.7, it can easily be observed that
Ω(G, ·) ⊆ AUT (G, ·).
Identity If I is the identity mapping on G, then hI = h ∈ H ∀ h ∈ H and there exists e ∈ H

where e is the identity element in G such that (IR−1
e , IL−1

e , I) = (I, I, I) ∈ AUT (G, ·).
So, (I, I, I) ∈ Ω(G, ·). Thus Ω(G, ·) is non-empty.

Closure and Inverse Let A,B ∈ Ω(G, ·). Then there exist α, β ∈ SSY M(G, ·) and some
f1, g1, f2, g2 ∈ H such that

A = (αR−1
g1

, αL−1
f1

, α), B = (βR−1
g2

, βL−1
f2

, β) ∈ AUT (G, ·).

AB−1 = (αR−1
g1

, αL−1
f1

, α)(Rg2β
−1, Lf2β

−1, β−1)

= (αR−1
g1

Rg2β
−1, αL−1

f1
Lf2β

−1, αβ−1) ∈ AUT (G, ·).
Using the same techniques for the proof of closure and inverse in Theorem 3.1 here
and by letting δ = βR−1

g1
Rg2β

−1 and γ = βL−1
f1

Lf2β
−1, it can be shown that,

AB−1 = (αβ−1R−1
g , αβ−1L−1

f , αβ−1) ∈ AUT (G, ·) where g = eαβ−1γ, f = eαβ−1δ ∈ H

such that αβ−1 ∈ SSY M(G, ·) ⇔ AB−1 ∈ Ω(G, ·).
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∴ Ω(G, ·) ≤ AUT (G, ·).

Theorem 3.8 Let (G, ·) be a Smarandache loop with an S-subgroup H such that f, g ∈ H
and α ∈ SBS(G, ·). If the mapping

Φ : Ω(G, ·) −→ SBS(G, ·) is defined as Φ : (αR−1
g , αL−1

f , α) 7→ α,

then Φ is an homomorphism.

Proof
Let A,B ∈ Ω(G, ·). Then there exist α, β ∈ SSY M(G, ·) and some f1, g1, f2, g2 ∈ H such
that

A = (αR−1
g1

, αL−1
f1

, α), B = (βR−1
g2

, βL−1
f2

, β) ∈ AUT (G, ·).
Φ(AB) = Φ[(αR−1

g1
, αL−1

f1
, α)(βR−1

g2
, βL−1

f2
, β)] = Φ(αR−1

g1
βR−1

g2
, αL−1

f1
βL−1

f2
, αβ). It will be

good if this can be written as; Φ(AB) = Φ(αβδ, αβγ, αβ) such that hαβ ∈ H ∀ h ∈ H and
δ = R−1

g , γ = L−1
f for some g, f ∈ H.

This is done as follows: If

(αR−1
g1

βR−1
g2

, αL−1
f1

βL−1
f2

, αβ) = (αβδ, αβγ, αβ) ∈ AUT (G, ·) then,

xαβδ · yαβγ = (x · y)αβ ∀ x, y ∈ G.

Put y = e and replace x by xβ−1α−1 then xδ · eαβγ = x ⇔ δ = R−1
eαβγ.

Similarly, put x = e and replace y by yβ−1α−1. Then, eαβδ · yγ = y ⇔ γ = L−1
eαβδ. So,

Φ(AB) = (αβR−1
eαβγ, αβL−1

eαβδ, αβ) = αβ = Φ(αR−1
g1

, αL−1
f1

, α)Φ(βR−1
g2

, βL−1
f2

, β) = Φ(A)Φ(B).

∴ Φ is an homomorphism.

Theorem 3.9 Let (G, ·) be a Smarandache loop with an S-subgroup H such that f, g ∈ H
and α ∈ SSY M(G, ·). If the mapping

Φ : Ω(G, ·) −→ SBS(G, ·) is defined as Φ : (αR−1
g , αL−1

f , α) 7→ α

then,
A = (αR−1

g , αL−1
f , α) ∈ ker Φ if and only if α

is the identity map on G, g · f is the identity element of (G, ·) and g ∈ Nµ(G, ·) the middle
nucleus of (G, ·).

Proof

9



Necessity ker Φ = {A ∈ Ω(G, ·) : Φ(A) = I}. So, if A = (αR−1
g1

, αL−1
f1

, α) ∈ ker Φ, then

Φ(A) = α = I. Thus, A = (R−1
g1

, L−1
f1

, I) ∈ AUT (G, ·) ⇔

x · y = xR−1
g · yL−1

f ∀ x, y ∈ G. (5)

Replace x by xRg and y by yLf in (5) to get

x · y = xg · fy ∀ x, y ∈ G. (6)

Putting x = y = e in (6), we get g · f = e. Replace y by yL−1
f in (6) to get

x · yL−1
f = xg · y ∀ x, y ∈ G. (7)

Put x = e in (7), then we have yL−1
f = g · y ∀ y ∈ G and so (7) now becomes

x · (gy) = xg · y ∀ x, y ∈ G ⇔ g ∈ Nµ(G, ·).

Sufficiency Let α be the identity map on G, g · f the identity element of (G, ·) and g ∈
Nµ(G, ·). Thus, fg · f = f · gf = fe = f . Thus, f · g = e. Then also, y =
fg · y = f · gy ∀ y ∈ G which results into yL−1

f = gy ∀ y ∈ G. Thus, it can be seen

that xαR−1
g · yαL−1

f = xR−1
g · yL−1

f = xR−1
g α · yL−1

f α = xR−1
g · yL−1

f = xR−1
g · gy =

(xR−1
g ·g)y = xR−1

g Rg ·y = x·y = (x·y)α ∀ x, y ∈ G. Thus, Φ(A) = Φ(αR−1
g , αL−1

f , α) =

Φ(R−1
g , L−1

f , I) = I ⇒ A ∈ ker Φ.

Theorem 3.10 Let (G, ·) be a Smarandache loop with an S-subgroup H such that f, g ∈ H
and α ∈ SSY M(G, ·). If the mapping

Φ : Ω(G, ·) −→ SBS(G, ·) is defined as Φ : (αR−1
g , αL−1

f , α) 7→ α

then,
|Nµ(G, ·)| = | ker Φ| and |Ω(G, ·)| = |SBS(G, ·)||Nµ(G, ·)|.

Proof
Let the identity map on G be I. Using Theorem 3.9, if

gθ = (R−1
g , L−1

g−1 , I) ∀ g ∈ Nµ(G, ·) then, θ : Nµ(G, ·) −→ ker Φ.

θ is easily seen to be a bijection, hence |Nµ(G, ·)| = | ker Φ|.
Since Φ is an homomorphism by Theorem 3.8, then by the first isomorphism theorem

in classical group theory, Ω(G, ·)/ ker Φ ∼= ImΦ. Φ is clearly onto, so ImΦ = SBS(G, ·),
so that Ω(G, ·)/ ker Φ ∼= SBS(G, ·). Thus, |Ω(G, ·)/ ker Φ| = |SBS(G, ·)|. By Lagrange’s
theorem, |Ω(G, ·)| = | ker Φ||Ω(G, ·)/ ker Φ|, so, |Ω(G, ·)| = | ker Φ||SBS(G, ·)|, ∴ |Ω(G, ·)| =
|Nµ(G, ·)||SBS(G, ·)|.
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Theorem 3.11 Let (G, ·) be a Smarandache loop with an S-subgroup H. If

Θ(G, ·) =
{

(f, g) ∈ H ×H : (G, ◦) % (G, ·)

for (G, ◦) the Smarandache principal f, g-isotope of (G, ·)
}

then,

|Ω(G, ·)| = |Θ(G, ·)||SA(G, ·)|.

Proof
Let A,B ∈ Ω(G, ·). Then there exist α, β ∈ SSY M(G, ·) and some f1, g1, f2, g2 ∈ H such
that

A = (αR−1
g1

, αL−1
f1

, α), B = (βR−1
g2

, βL−1
f2

, β) ∈ AUT (G, ·).
Define a relation ∼ on Ω(G, ·) such that

A ∼ B ⇐⇒ f1 = f2 and g1 = g2.

It is very easy to show that ∼ is an equivalence relation on Ω(G, ·). It can easily be seen
that the equivalence class [A] of A ∈ Ω(G, ·) is the inverse image of the mapping

Ψ : Ω(G, ·) −→ Θ(G, ·) defined as Ψ : (αR−1
g1

, αL−1
f1

, α) 7→ (f, g).

If A,B ∈ Ω(G, ·) then Ψ(A) = Ψ(B) if and only if (f1, g1) = (f2, g2) so,
f1 = f2 and g1 = g2. Thus, since Ω(G, ·) ≤ AUT (G, ·) by Theorem 3.7,
then AB−1 = (αR−1

g1
, αL−1

f1
, α)(βR−1

g2
, βL−1

f2
, β)−1 = (αR−1

g1
Rg2β

−1, αL−1
f1

Lf2β
−1, αβ−1) =

(αβ−1, αβ−1, αβ−1) ∈ AUT (G, ·) ⇔ αβ−1 ∈ SA(G, ·). So,

A ∼ B ⇐⇒ αβ−1 ∈ SA(G, ·) and (f1, g1) = (f2, g2).

∴ |[A]| = |SA(G, ·)|. But each A = (αR−1
g , αL−1

f , α) ∈ Ω(G, ·) is determined by some

f, g ∈ H. So since the set
{

[A] : A ∈ Ω(G, ·)
}

of all equivalence classes partitions Ω(G, ·)
by the fundamental theorem of equivalence Relation,

|Ω(G, ·)| =
∑

f,g∈H

|[A]| =
∑

f,g∈H

|SA(G, ·)| = |Θ(G, ·)||SA(G, ·)|.

∴ |Ω(G, ·)| = |Θ(G, ·)||SA(G, ·)|.

Theorem 3.12 Let (G, ·) be a finite Smarandache loop with a finite S-subgroup H. (G, ·)
is S-isomorphic to all its S-loop S-isotopes if and only if

|(H, ·)|2|SA(G, ·)| = |SBS(G, ·)||Nµ(G, ·)|.
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Proof
As shown in [Corollary 5.2, [12]], an S-loop is S-isomorphic to all its S-loop S-isotopes if and
only if it is S-isomorphic to all its Smarandache f, g principal isotopes. This will happen if
and only if H ×H = Θ(G, ·) where Θ(G, ·) is as defined in Theorem 3.11.

Since Θ(G, ·) ⊆ H × H then it is easy to see that for a finite Smarandache loop with
a finite S-subgroup H, H × H = Θ(G, ·) if and only if |H|2 = |Θ(G, ·)|. So the proof is
complete by Theorem 3.10 and Theorem 3.11.

Corollary 3.3 Let (G, ·) be a finite Smarandache loop with a finite S-subgroup H. (G, ·) is
a GS-loop if and only if

|(H, ·)|2|SA(G, ·)| = |SBS(G, ·)||Nµ(G, ·)|.

Proof
This follows by the definition of a GS-loop and Theorem 3.12.

Lemma 3.1 Let (G, ·) be a finite GS-loop with a finite S-subgroup H and a middle nucleus
Nµ(G, ·) .

|(H, ·)| = |Nµ(G, ·)| ⇐⇒ |(H, ·)| = |SBS(G, ·)|
|SA(G, ·)| .

Proof
From Corollary 3.3,

|(H, ·)|2|SA(G, ·)| = |SBS(G, ·)||Nµ(G, ·)|.
Necessity If |(H, ·)| = |Nµ(G, ·)|, then

|(H, ·)||SA(G, ·)| = |SBS(G, ·)| =⇒ |(H, ·)| = |SBS(G, ·)|
|SA(G, ·)| .

Sufficiency If |(H, ·)| = |SBS(G,·)|
|SA(G,·)| then, |(H, ·)||SA(G, ·)| = |SBS(G, ·)|. Hence, multiplying

both sides by |(H, ·)|,

|(H, ·)|2|SA(G, ·)| = |SBS(G, ·)||(H, ·)|.

So that

|SBS(G, ·)||Nµ(G, ·)| = |SBS(G, ·)||(H, ·)| =⇒ |(H, ·)| = |Nµ(G, ·)|.

Corollary 3.4 Let (G, ·) be a finite GS-loop with a finite S-subgroup H. If |Nµ(G, ·)| 	 1,
then,

|(H, ·)| = |SBS(G, ·)|
|SA(G, ·)| . Hence, |(G, ·)| = n|SBS(G, ·)|

|SA(G, ·)| for some n 	 1.
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Proof
By hypothesis, {e} 6= H 6= G. In a loop, Nµ(G, ·) is a subgroup, hence if |Nµ(G, ·)| 	 1,
then, we can take (H, ·) = Nµ(G, ·) so that |(H, ·)| = |Nµ(G, ·)|. Thus by Lemma 3.1,

|(H, ·)| = |SBS(G,·)|
|SA(G,·)| .

As shown in [Section 1.3, [8]], a loop L obeys the Lagrange’s theorem relative to a subloop
H if and only if H(hx) = Hx for all x ∈ L and for all h ∈ H. This condition is obeyed by
Nµ(G, ·), hence

|(H, ·)|
∣∣∣|(G, ·)| =⇒ |SBS(G, ·)|

|SA(G, ·)|

∣∣∣∣|(G, ·)| =⇒

there exists n ∈ N such that

|(G, ·)| = n|SBS(G, ·)|
|SA(G, ·)| .

But if n = 1, then |(G, ·)| = |(H, ·)| =⇒ (G, ·) = (H, ·) hence (G, ·) is a group which is a
contradiction to the fact that (G, ·) is an S-loop.

∴ |(G, ·)| = n|SBS(G, ·)|
|SA(G, ·)| for some natural numbers n 	 1.
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[11] T. G. Jáıyéo. lá (2006), On the universality of some Smarandache loops of Bol-Moufang
type, Scientia Magna Journal, 2, 4, 45–48.
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