The Smarandache-Korselt criterion, a variant of Korselt's criterion

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract

Combining two of my favourite objects of study, the Fermat pseudoprimes and the Smarandache function, I was able to formulate a criterion, inspired by Korselt's criterion for Carmichael numbers and by Smarandache function, which seems to be necessary (though not sufficient as the Korselt's criterion for absolute Fermat pseudoprimes) for a composite number (without a set of probably definable exceptions) to be a Fermat pseudoprime to base two.

Conjecture:

Any Poulet number, without a set of definable exceptions, respects either the Korselt's criterion (case in which it is a Carmichael number also) either the Smarandache-Korselt criterion.

Definition:

A composite odd integer $n=d_{1} * d_{2} * \ldots * d_{n}$, where $d_{1}, d_{2}, \ldots, d_{n}$ are its prime factors, is said that respects the SmarandacheKorselt criterion if $n-1$ is divisible by $S\left(d_{i}-1\right)$, where S is the Smarandache function and $1 \leq i \leq n$.

Note:

A Carmichael number not always respects the SmarandacheKorselt criterion: for instance, in the case of the number 561 $=3 * 11 * 17,560$ it is divisible by $S(3-1)=2$ and by $S(11-$ $1)=5$ but is not divisible by $S(17-1)=6$; in the case of the number $1729=7 * 13 * 19,1728$ it is divisible by $S(6)=3$, $S(12)=4$ and $S(18)=6$.

Verifying the conjecture:

(for the first five Poulet numbers and for two bigger consecutive numbers which are not Carmichael numbers also):

```
: For P = 341 = 11*31, P - 1 = 340 is divisible by S(10)=
    5 and S(30) = 5;
: For P = 645 = 3*5*43, P - 1 = 644 is divisible by S(2) =
    2, S(4) = 4 and S(42) = 7;
```

: For $\mathrm{P}=1387=19 * 73, \mathrm{P}-1=1386$ is divisible by $\mathrm{S}(18)$ $=6$ and $S(72)=6$;
For $P=1905=3 * 5 * 127, P-1=1904$ is divisible by $S(2)=2, S(4)=4$ and $S(42)=7$;
: For $P=2047=23 * 89, P-1=2046$ is divisible by $S(22)$ $=11$ and $\mathrm{S}(88)=11$;
: For $P=2701=37 * 73, P-1=2700$ is divisible by $S(36)$ $=6$ and $S(72)=6$;
(...)
: For 999855751441 = 774541*1290901, P - 1 is divisible by $S(774540)=331$ and $S(1290900)=331$;
: For $P=999857310721=2833 * 11329 * 31153, \mathrm{P}$ - 1 is divisible by $S(2832)=59$ and $S(11328)=59$ and $S(31152=$ 59).

Comment:

One exception that we met (which probably is part of a set of definable exceptions) is the Poulet number $P=999828475651=$ 191*4751*1101811; indeed, P - 1 is not divisible by S(1101810) = 1933, and P is not a Carmichael number.

