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Abstract: For any graph G = (V, E), lict graph η(G) of a graph G is the graph whose vertex

set is the union of the set of edges and the set of cut vertices of G in which two vertices are

adjacent if and only if the corresponding edges are adjacent or the corresponding members

of G are incident. A dominating set of a graph η(G) , is a total lict dominating set if the

dominating set does not contains any isolates. The total lict dominating number γt(η(G)) of

the graph G is a minimum cardinality of total lict dominating set of graph G. In this paper

many bounds on γt(η(G)) are obtained and its exact values for some standard graphs are

found in terms of parameters of G. Also its relationship with other domination parameters

is investigated.

Key Words: Smarandachely k-dominating set, total lict domination number, lict graph,

edge domination number, total edge domination number, split domination number, non-split

domination number.

AMS(2010): 05C69

§1. Introduction

The graphs considered here are finite, connected, undirected without loops or multiple edges

and without isolated vertices. As usual ′p′ and ′q′ denote the number of vertices and edges of

a graph G. For any undefined term or notation in this paper can be found in Harary [1].

A set D ⊆ V of G is said to be a Smarandachely k-dominating set if each vertex of G is

dominated by at least k vertices of S and the Smarandachely k-domination number γk(G) of G

is the minimum cardinality of a Smarandachely k-dominating set of G. Particularly, if k = 1,

such a set is called a dominating set of G and the Smarandachely 1-domination number of G is

called the domination number of G and denoted by γ(G) in general.

The lict graph η(G) of a graph G is the graph whose vertex set is the union of the set

of edges and the set of cut vertices of G in which two vertices are adjacent if and only if the

corresponding edges are adjacent or the corresponding members of G are incident. A dominating
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set of a graph η(G), is a total lict dominating set if the dominating set does not contain any

isolates. The total lict dominating number γt(η(G)) of G is a minimum cardinality of total lict

dominating set of G.

The vertex independence number β0(G) is the maximum cardinality among the indepen-

dent set of vertices of G. L(G) is the line graph of G, γ
′

e(G) is the complementary edge domina-

tion number, γs(G) is the split dominating number, γ
′

t(G) is the total edge dominating number

, γns(G) is the non-split dominating number, χ(G)is the chromatic number and ω(G) is the

clique number of a graph G. The degree of an edge e = uv of G is deg(e) = deg(u)+deg(v)−2.

The minimum (maximum) degree of an edge in G is denoted by δ
′

(∆
′

). A subdivision of an

edge e = uv of a graph G is the replacement of an edge e by a path (u, v, w) where w ∋ E(G).

The graph obtained from G by subdividing each edge of G exactly once is called the subdivision

graph of G and is denoted by S(G). For any real number X ,⌈X⌉ denotes the smallest integer

not less than X and ⌊X⌋ denotes the greatest integer not greater than X .

In this paper we established the relationship of this concept with the other domination

parameters. We use the following theorems for our later results.

Theorem A([2]) For any graph G,γe(G) ≥
⌈

q

∆′ + 1

⌉
.

Theorem B([2]) For any graph G of order p ≥ 3,

(i) β1(G) + β1(Ḡ) 6 2
⌈p

2

⌉
.

(ii) β1(G) ∗ β1(Ḡ) 6

⌈p

2

⌉2
.

Theorem C([3]) For any graph G,

(i) γ
′

t(S(Kp)) = 2
⌈p

2

⌉
.

(ii) γ
′

t(S(Kp,q)) = 2q(p ≤q).

(iii) γ
′

t(S(G)) = 2(p − β1).

Theorem D([4]) For every graph G of order p,

(i) χ(G) ≥ ω(G).

(ii) χ(G) ≥ q

β0
(G).

Theorem E([5]) For any connected graph G with p ≥ 3 vertices, γ
′

t(G) ≤
⌈

2p

3

⌉
.

Theorem F([5]) If G is a connected graph G with p ≥ 4 vertices and q edges then
q

∆′
≤ γ

′

t(G),

further equality holds for every cycle Cp where p = 4n, n ≥ 1.

§2. Main Results

Theorem 1 First list out the exact values of γt(η(G)) for some standard graphs:
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(i) For any cycle Cp with p ≥ 3 vertices,

γt(η(Cp)) =





p/2 if p ≡ 0(mod4).⌊p

2

⌋
+ 1 otherwise.

(ii) For any path Pp with p ≥ 4 vertices,γt(η(Pp)) =

⌊
2q

3

⌋
.

(iii) For any star graph K1,p with p ≥ 3 vertices, γt(η(K1,p)) = 2.

(iv) For any wheel graph Wp with p ≥ 4 vertices, γt(η(Wp)) =
⌊p

2

⌋
.

(v) For any complete graph Kp with p ≥ 3 vertices, γt(η(Kp)) =

⌊
2p

3

⌋
.

(vi) For any friendship graph Fp with k blocks, γt(η(Fp)) = k.

Initially we obtain a lower bound of total lict domination number with edge and total edge

domination number.

Theorem 2 For any graph G,γt(η(G)) ≥ γe(G).

Proof Let D be a γe set of graph G, if D is a total lict dominating set of a graph G, then

for every edge e1 ∈ D there exists an edge e2 ∈ D, e1 6= e2 such that e1 is adjacent to e2. Hence

γt(η(G)) = γe(G). Otherwise for each isolated edge ei ∈ D, choose an edge ej ∈ N(ei). Let

E1 = {ej/ej ∈ N(ei)}, then D ∪ E1 is a total lict dominating set of G and |D ∪ E1| ≥ |D|.
Hence, γt(η(G)) ≥ γe(G). 2
Theorem 3 For any graph G γt(η(G)) ≥ γ

′

t(G), equality holds if G is non-separable.

Proof Let D be a γ
′

t set of G, if all the cut vertices of G are incident with at least one

edge of D, then γt(η(G)) = γ
′

t(G). Otherwise there exists at least one cut vertex vc of graph G

which is not incident with any edge of D, then γt(η(G)) ≥ |D ∪ e| ≥ γ
′

t(G) + 1, where e is an

edge incident with vc and e ∈ N(D). Thus, γt(η(G)) ≥ γ
′

t(G).

For the equality, note that if the graph G is non-separable, then η(G) = L(G). Thus

γt(η(G)) = γt(L(G)) = γ
′

t(G). 2
Next we obtain an inequality of total lict domination in terms of number of vertices, number

of edges and maximum edge degree of graph G.

Theorem 4 For any connected graph G with p ≥ 3 vertices, then γt(η(G)) ≤ 2
⌈q

3

⌉
.

Proof Let E(G) = {e1, e2, e3, · · · , el} and let D = {el/1 ≤ i ≤ l and i 6= 0(mod3)}∪{el−1}.
Then D is total lict dominating set of G and |D| = 2

⌈q

3

⌉
. Hence, γt(η(G)) ≤ 2

⌈q

3

⌉
. 2

Theorem 5 For any non-separable graph G,

(i) γt(η(G)) ≤
⌈

2p

3

⌉
, p ≥ 3.

(ii)
q

∆′
≤ γt(γ(G)), p ≥ 4 vertices, equality holds for every cycle Cp, where p = 4n, n ≥ 1.
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Proof Let G be a non-separable graph,then γt(η(G)) = γ
′

t(G). Using Theorems E and F,

the result follows. 2
Theorem 6 For any connected graph G,γt(η(G)) ≤ q − ∆

′

(G) + 1, where ∆
′

is a maximum

degree of an edge.

Proof Let e be an edge with degree ∆
′

and let S be a set of edges adjacent to e in G.

Then E(G) − S is the lict dominating set of graph G. We consider the following two cases.

Case 1 If 〈E(G)−S〉 contains at least one isolate in η(G) other than the vertex corresponding

to e in η(G).

Let E1 be the set of all such isolates, then for each isolate ei ∈ E1, let E2 = {ej/ej ∈
(N(ei) ∩ N(e)} , then F = [{(E(G) − S) − E1} ∪ E2] is a total lict dominating set of graph G.

Thus, γt(η(G)) ≤ q − ∆
′

(G).

Case 2 If 〈E(G) − S〉 contains only e as an isolate in η(G).

Then for an edge ei ∈ N(e), {(E(G) − S) ∪ ei} is a total lict dominating set of a graph G.

Thus, γt(η(G)) ≤ |(E(G) − S) ∪ ei| = q − ∆
′

(G) + 1.

From Cases 1 and 2, the result follows. 2
Theorem 7 For any connected graph G,γt(η(G)) ≥

⌈
q

∆′ + 1

⌉
.

Proof Using Theorem 2 and Theorem A, the result follows. 2
Theorem 8 For any connected graph G,γt(η(G)) ≤ p − 1.

Proof Let T be a spanning tree of a graph G. Let A = {e1, e2, e3, · · · , ek} be the set of edges

of spanning tree T , A covers all the vertices and cut vertices of a graph η(G). Hence,γt(η(G)) ≤
A = p − 1. 2

Now we obtain the relationship between total lict domination and total domination of a

line graph.

Theorem 9 For any graph G,with k number of cut vertices,

γt(η(G)) ≤ γt(L(G)) + k.

Proof We consider the following two cases.

Case 1 k = 0.

Then the graph G is non-separable, and in that case η(G) = L(G). Hence, γt(η(G)) =

γt(L(G)).

Case 2 k 6= 0.

Let D be a total dominating set of L(G) and let S be the set of cut vertices which is

not incident with any edge of D, then for each cut vertex vc ∈ S, choose exactly one edge in
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E1, where E1 = {ej ∈ E(G)/ej is incident with vc and ej ∈ N(D)} with |E1| = |vc|. Hence,

γt(η(G)) ≤ γt(L(G)) + |E1| = γt(L(G)) + |vc| = γt(L(G)) + k.

From Cases 1 and 2, the result follows. 2
In the following theorems we obtain total lict domination of any tree in terms of different

parameters of G.

Theorem 10 For any tree T with k number of cut vertices,γt(η(G)) ≤ k + 1, further equality

holds if T = K1,p, p ≥ 3.

Proof Let A = {v1, v2, v3, · · · , vk} ⊂ V (G) be the set of all cut vertices of a tree T with

|A| = k. Since every edge in T is incident with at least one element of A, A covers all the

edges and cut vertices of η(G), if for every cut vertex v ∈ A there exists a vertex u ∈ A,u 6= v,

such that v is adjacent to u. Otherwise let e1 ∈ E(G) such that e1 is incident with A, so that

γt(η(G)) ≤ {A ∪ e1} = |A| + 1 = k + 1.

To prove the equality, let K1,p be a star and C be the cut vertex and e be any edge of

K1,p. Then D = {C ∪ e} is the γt set of η(G) with cardinality k + 1. 2
Theorem 11 For any tree T ,γt(η(T )) ≥ χ(T ) and equality holds for all star graph K1,p.

Proof χ(T ) = 2 and 2 ≤ γt(T ) ≤ p. Hence, γt(η(T )) ≥ χ(T ). For T = K1,p, clearly

χ(T ) = 2. Using Theorem 1(iii), the equality follows. 2
Theorem 12 For any tree T ,γt(η(T )) ≥ ω(T ).

proof The result follows from Theorem 11 and Theorem D. 2
Theorem 13 For any tree T , γt(η(T )) ≥ q

β0(T )
.

Proof The result follows from Theorem 11 and Theorem D. 2
Theorem 14 For any tree T , γt(η(T )) ≤ γt(T ).

Proof Let T be a tree and D be γt of T . Let E1 denotes the edge set of the induced graph

〈D〉. Let F be the set of cut vertices which are not incident with any edge of E1. we consider

the following two cases.

Case 1 If F = Φ, and in η(T ) if E1 does not contains any isolates then E1 is a total lict

dominating set of T . Otherwise for each isolated edge ei ∈ E1, choose exactly one edge in E2,

where E2 = {ej ∈ E(T )/ej ∈ N(ei)}. Then D∗ = E1 ∪ E2 is a total lict dominating set of tree

T . Hence, γt(η(T )) ≤ |D∗| ≤ |D| = γt(T ).

Case 2 If F 6= Φ, then for each cut vertex vc ∈ F . Let E2 = {ej ∈ E(T )/ej ∈ N(ei)

and incident with vc}.Then D∗ = E1 ∪ E2 is a total lict dominating set of tree T . Hence,

γt(η(T )) ≤ |D∗| ≤ |D| = γt(T ).

From Cases 1 and 2, the result follows. 2
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Theorem 15 For any tree T with p ≥ 3, in which every non-end vertex is incident with an

end vertex, then γt(η(T )) ≤ β0(T ).

Proof We consider the following two cases.

Case 1 T=K1,p.

Noticing that β0(T ) = p − 1 ≥ 2 for p ≥ 3, and using Theorem 1(iii), the result follows.

Hence,γt(η(T )) ≤ β0(T ).

Case 2 T 6= K1,p.

Let B = {v1, v2, v3, · · · , vm} ⊂ V (G) such that |B| = β0(T ). Let S ⊆ B be the set of k

end vertices of T and N ⊆ B be the set of l non-end vertices of T such that S ∪ N = B. In

T , for each vertex vi ∈ S there exists cut vertex Ci ∈ N(vi). Then in η(T ) the cut vertex Ci

covers the edges incident with cut vertex Ci of T where i = 1, 2, 3, 4, 5, .............k and for each

vertex vi ∈ N in T , a vertex vj ∈ η(T ) which is a cut vertex of T covers all the edges incident

with vj where j = 1, 2, 3, 4, 5.......l. Thus {Ci}k
i=1 ∪ {vj}l

j=1 forms a total lict dominating set of

T . Hence γt(η(T )) ≤ |S ∪ N | ≤ |B| = β0(T ).

From case(1) and case(2) the result follows. 2
Theorem 16 Let T be any order p ≥ 3 and n be the number of pendent edges of T , then

n ≤ γt(η(S(T ))) ≤ 2(p − 1) − n and equality holds for all K1,p.

Proof Let u1v1, u2v2, u3v3, u4v4, · · · , unvn be the pendent edges of T . Let wi be the vertex

set of S(T ) that subdivides the edges uivi, i = 1, 2, 3, 4, · · · , n. Any total lict dominating

set of S(T ) contains the edges uiwi, i = 1, 2, 3, 4, · · · , n and hence γt(η(S(T ))) ≥ n. Further

E(S(T )) − S, where S is the set of all pendent edges of S(T ) forms a total lict dominating set

of S(T ). Hence,γt(η(S(T ))) ≤ 2(p − 1) − n.

Notice that the edges of D = {uiwi}, i = 1, 2, 3, · · · , n will forms a γt of η(S(T )) for K1,p.

Thus, the equality γt(η(S(T ))) = n. Similarly, the set {E(S(T )−S} will forms a γt of η(S(T ))

for K1,p. So γt(η(S(T ))) = 2(p − 1) − n. 2
Now we obtain the relation between total lict domination in terms of complimentary edge

domination, total domination and split domination and non-split domination.

Theorem 17 For any graph G if γe(G) = γ
′

e(G), then γt(η(G)) ≥ γ
′

e(G).

Proof Let us consider the graph G, with γe(G) = γ
′

e(G) and using Theorem 2.2, the result

follows. 2
Corollary 1 Let D be the γe set of a non-separable graph G then, γt(η(G)) ≥ γ

′

e(G).

Proof Since every complementary edge dominating set is an edge dominating set, the

follows from Theorem 2. 2
Theorem 18 For any non-separable graph G with p ≥ 3, then γt(G) ≤ γt(η(G)), equality holds

for all cycle Cp.
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Proof Let D = {v1, v2, v3, · · · , vk} be a γt set of a graph G. Let E∗ = {ei ∈ E(G)/ei is

incident with vi}, i = 1, 2, 3, 4, · · · , k. Then every edge in 〈E(G) − E∗〉 is adjacent to at least

one edge in E∗. Clearly E∗ covers all the vertices in η(G), and 〈E∗〉 does not contain any

isolates, E∗ is a total lict dominating set of graph G and |D| ≤ |E∗|. Hence,γt(G) ≤ γt(η(G)).

For any cycle Cp, η(G) = L(G),γt(L(G)) = γt(G). Hence,γt(G) = γt(η(G)). 2
Theorem 19 For any cycle Cp p ≥ 3, γs(Cp) ≤ γt(η(Cp)) ≤ γns(Cp).

Proof We consider the following two cases.

Case 1 γs(Cp) ≤ γt(η(Cp)).

Let A = {v1, v2, v3, · · · , vk} be a γs dominating set of cycle Cp. For any cycle Cp, η(G) =

L(G), the corresponding edges B = {e1, e2, e3, · · · , ek} will be a split dominating set of η(G).

Since 〈B〉 is disconnected, γt(η(Cp)) ≤ γs(Cp) + 1. Hence,γs(Cp) ≤ γt(η(Cp)).

Case 2 γt(η(Cp)) ≤ γns(Cp).

Let A = {v1, v2, v3, · · · , vk} be a γns dominating set of cycle Cp. For any cycle Cp, η(G) =

L(G), the corresponding edges B = {e1, e2, e3, · · · , ek} will be a split dominating set of η(G).

Since 〈B〉 is connected. Hence, γt(η(Cp)) ≤ γns(Cp).

The result follows from Cases 1 and 2. 2
Now we obtain the total lict dominating number in terms of independence number and

edge covering number.

Theorem 20 For any graph G,γt(η(G)) ≤ 2β1(G).

Proof Let S be a maximum independent edge set in a graph G. Then every edge in

E(G) − S is adjacent to at least one edge in S. Let D be the set of cut vertices that is not

incident with any edge of S and let E1 = {ei ∈ E(G)−S/ei ∈ N(S)}. We consider the following

two cases.

Case 1 If D = φ, then for each edge ej ∈ S, pick exactly one edge ei ∈ E1 , such that

ei ∈ N(ej). Let D1 be the set of all such edges with |D1| ≤ |S|. Then F = S ∪ D1 is a total

lict dominating set of G. Hence, γt(η(G)) ≤ |S ∪ D1| = |S| + |D1| ≤ |S| + |S| = 2β1(G).

Case 2 If D 6= φ, then for each cut vertex vc ∈ D. Let E2 = {ei ∈ E(G) − S/ej ∈ N(S) and

incident with vc}, E3 = {ek ∈ S/ek ∈ N(E2)} and D2 = S − E3. Now for each edge el ∈ D2,

pick exactly one edge in ei ∈ E1 , such that el is adjacent to ei. Let D3 be the set of all such

edges. Then F = D2 ∪ D3 ∪ E2 ∪ E3 is a total lict dominating set of G. Hence,

γt(η(G)) ≤ |F | = |D2 ∪ E3 ∪ D3 ∪ E2|
≤ |D2 ∪ E3| + |D3 ∪ E2|
= |S| + |S| = 2|S| = 2β0(G)

From Cases 1 and 2,the result follows. 2
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Theorem 21 For any graph G,γt(η(G)) ≤ 2α0(G).

Proof Let S = {v1, v2, v3, v4, · · · , vk} ⊂ V (G) such that |S| = α0(G). Then for each vertex

vi, choose exactly one edge in E1 where E1 = {ei ∈ E(G)/ei is incident with vi} such that

|E1| ≤ |S|. Let D be the set of cut vertices that is not incident with any edge of E1 and let

E2 = {ej ∈ E(G) − E1/ej ∈ N(E1)}. We consider the following two cases.

Case 1 If D = φ, then for each edge ei ∈ E1, pick exactly one edge ej ∈ E2 ,such that

ej ∈ N(ei). Let D1 be the set of all such edges with |D1| ≤ |E1| = |S|. Then F = E1 ∪D1 is a

total lict dominating set of G. Hence,γt(η(G)) ≤ |E1 ∪D1| = |E1|+ |D1| ≤ |S|+ |S| = 2α0(G).

Case 2 If D 6= φ, then for each cut vertex vc ∈ D. Let E3 = {el ∈ E(G)−E1/el ∈ N(E1) and

incident with vc},
E4 = {ek ∈ E1/ek ∈ N(E3)} and D3 = E1 − E4. Now for each edge er ∈ D2, pick exactly

one edge in ej ∈ E2, such that er is adjacent to ej . Let D3 be the set of all such edges. Then

F = D2 ∪ D3 ∪ E3 ∪ E4 is a total lict dominating set of G. Hence,

γt(η(G)) ≤ |F | = |D2 ∪ E4 ∪ D3 ∪ E3|
≤ |D2 ∪ E4| + |D2 ∪ E4|
= |E1| + |E1| = |S| = 2α0(G)

From Cases 1 and 2, the result follows. 2
Now we obtain the total lict dominating number of a subdivision graph of a graph G in

terms of edge independence number and number of vertices of a graph G.

Theorem 22 For any graph G, γt(η(S(G))) ≤ 2q−2β1+p0, where p0 is the number of vertices

that subdivides β1.

Proof Let A = {uivi/1 ≤ i ≤ n} be the edge set of a graph G. Let X = {uivi/1 ≤ i ≤ n}
be a maximum independent edge set of graph G. Then X is edge dominating set of a graph

G. Let wi be the vertex set of S(G) and let p0 ∈ wi be the set of vertices that subdivides X .

Then for each vertex p0, choose exactly one edge in E1,where E1 = {uiwi or wivi ∈ S(G)/uiwi

or wivi is incident with p0 and adjacent to A − X}. Let F = {{{A− {X}} − {E1}} covers all

the edges and cut vertices of S(G). Hence,γt(η(S(G))) ≤ F = |A − X − E1| = 2q − 2β1 + p0.2
Theorem 23 For any non-separable graph G,

(i) γt(η(S(Kp)) = 2⌈p
2⌉.

(ii) γt(η(S(Kp,q)) = 2q(p ≤ q).

(iii) γt(η(S(G)) = 2(p − β1).

Proof Using the definitions of total lict dominating set and total edge dominating set of a

graph, the result follows from Theorem C. 2
Next, we obtain the Nordhus-Gaddam results for a total domination number of a lict graph.



Total Domination in Lict Graph 27

Theorem 24 For any connected graph G of order p ≥ 3 vertices,

(i) γt(η(G)) + γt(η(Ḡ)) ≤ 4⌈p
2⌉.

(ii) γt(η(G)) ∗ γt(η(Ḡ)) ≤ 4⌈p
2⌉2.

Proof The result follows from Theorem B and Theorem 20. 2
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