Two conjectures on Smarandache's divisor products sequence

Marius Coman

Abstract

In this paper I make the following two conjectures on the Smarandache's divisor products sequence where a term $P(n)$ of the sequence is defined as the product of the positive divisors of n : (1) there exist an infinity of n composites such that the number m $=P(n)+n-1$ is prime; (2) there exist an infinity of n composites such that the number $m=P(n)-n+1$ is prime.

The Smarandache's divisor products sequence (see A007955 in OEIS):
: 1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, 225, 1024, 17, 5832, 19, 8000, 441, 484, 23, 331776, 125, 676, 729, 21952, 29, 810000, 31, 32768, 1089, 1156, 1225, 10077696, 37, 1444, 1521, 2560000, 41, 3111696, 43, 85184, 91125, 2116, 47, 254803968 (...)

Conjecture 1:

Let $P(n)$ be the Smarandache's divisor products sequence where a term $P(n)$ of the sequence is defined as the product of the positive divisors of n : there exist an infinity of n composites such that the number $m=P(n)+$ n - 1 is prime.

Note that for n primes, because $P(n)=n, P(n)+n-1=$ $2 * n-1$ and is already conjectured that there exist an infinity of primes of the form $2 * q-1$, where q prime.

The sequence of primes m :

```
: m = 3, prime, for (n, P(n)) = (2, 2);
: m = 11, prime, for (n, P(n)) = (4, 8);
: m = 41, prime, for (n, P(n)) = (6, 36);
: m = 71, prime, for (n, P(n)) = (8, 64);
: m = 109, prime, for (n, P(n)) = (10, 100);
: m = 1739, prime, for (n, P(n)) = (12, 1728);
: m = 239, prime, for (n, P(n)) = (15, 225);
: m = 1039, prime, for (n, P(n)) = (16, 1024);
: m = 5849, prime, for (n, P(n)) = (18, 5832);
: m = 461, prime, for (n, P(n)) = (21, 441);
: m = 149, prime, for (n, P(n)) = (25, 125);
: m = 701, prime, for (n, P(n)) = (26, 676);
: m = 1259, prime, for (n, P(n)) = (35, 1225);
: m = 1481, prime, for (n, P(n)) = (38, 1444);
: m = 2560039, prime, for (n, P(n)) = (40, 2560000);
```

```
: \(\quad m=2161\), prime, for \((n, P(n))=(46,2116)\);
(...)
```

Examples of larger m:

```
: m = 46656000059, prime, for (n, P(n)) = (60,
    46656000000);
: m = 782757789791, prime, for (n, P(n)) = (96,
    782757789696);
: m = 1586874323051, prime, for (n, P(n)) = (108,
    1586874322944);
: m = 634562281237119143, prime, for (n, P(n)) = (168,
```

 \(634562281237118976)\) 。
 Note that m is prime for $n=12,60,96,108$, 168. I conjecture that m is prime for an infinity of n of the form 12*k.

Conjecture 2:

Let $P(n)$ be the Smarandache's divisor products sequence where a term $P(n)$ of the sequence is defined as the product of the positive divisors of n : there exist an infinity of n composites such that the number $m=P(n)-$ $n+1$ is prime.

Note that for n primes, because $P(n)=n, P(n)-n+1=$ 1.

The sequence of primes m:

```
: \(m=5\), prime, for \((n, P(n))=(4,8)\);
: \(\quad m=31\), prime, for \((n, P(n))=(6,36)\);
: \(m=19\), prime, for \((n, P(n))=(9,27)\);
: \(\quad m=211\), prime, for \((n, P(n))=(15,225)\);
: \(\quad m=1009\), prime, for \((n, P(n))=(16,1024)\);
: \(\quad m=421\), prime, for \((n, P(n))=(21,441)\);
: \(\quad m=463\), prime, for \((n, P(n))=(22,484)\);
: \(\quad m=331753\), prime, for \((n, P(n))=(24,331776)\);
: \(\quad m=149\), prime, for \((n, P(n))=(25,125)\);
: \(m=1123\), prime, for \((n, P(n))=(34,1156)\);
: \(m=254803921\), prime, for \((n, P(n))=(48\),
    254803968) ;
(...)
```

Examples of larger m:
: m = 531440999911, prime, for ($\mathrm{n}, \mathrm{P}(\mathrm{n})$) $=(90$, $531441000000)$;
: $\quad m=389328928561$, prime, for $(n, P(n))=(208$, $389328928768)$.

Note that m is prime for $n=24$, 48. I conjecture that m is prime for an infinity of n of the form $12 * k$.

