PROPOSED PROBLEM

by J. Thompson

Calculate:

$$
\lim _{n \rightarrow \infty}\left(1+\sum_{k=2}^{n} \frac{1}{\eta(k)}-\log \eta(n)\right)
$$

where $\eta(n)$ is Smarandache Function : the smallest integer m, such that m ! is divisible by n.

Solution:
We know that $\left(\sum_{k=1}^{n} 1 / k-\log n\right)$ converges to e for $n \rightarrow \infty$.
It's easy to show that for $k \geq 2, \eta(k) \leq k$. More, for k a composite number $\geq 10, \eta(k) \leq k / 2$. Also, if $p>4$ then : $\eta(p)=p$ if and only if p is prime.

$$
\sum_{k=10}^{n} \frac{1}{\eta(k)}-\log \eta(n) \geq\left(\sum_{k=10}^{n} \frac{1}{k}-\log n\right)+\sum_{\substack{k=10 \\ k=p n m e}} \frac{1}{k} \xrightarrow{n \rightarrow \infty} e+\infty=\infty
$$

because for any prime number p there exists a composite number $p-1$ such that $\frac{1}{p-1}>\frac{1}{p}$ thus :

$$
\sum_{\substack{k=10 \\ k \times p n m e}} \frac{1}{k}=\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{18}+\ldots+\frac{1}{n}>\frac{1}{11}+\frac{1}{13}+\frac{1}{17}+\ldots+\frac{1}{p(n)} \xrightarrow{n \rightarrow \infty} \infty
$$

where $p(n)$ is the greatest prime number less that n.
We took out the first nine terms of that series, the limit of course didn't chance.

Reference:

Smarandache F., " A function in the number theory", <Analele Univ. Timisoara>, fasc. 2, Vol. XVI, pp. 163-8, 1979; see Mathematical Review: 82a:03012.

Current Address:

J. Thompson, Number Theory Association

3985 N. Stone Rd., \#246
TUCSON, AZ 85705, USA

