FLORENTIN SMARANDACHE

 A Class of Recursive SetsIn this article one builds a class of recursive sets, one establishes properties of these sets and one proposes applications. This article widens some results of [1].

1) Definitions, properties.

One calls recursive sets the sets of elements which are built in a recursive manner: let T be a set of elements and f_{i} for i between 1 and s, of operations n_{i}, such that $f_{i}: T^{n_{i}} \rightarrow T$. Let's build by recurrence the set M included in T and such that:
(Def. 1) 1°) certain elements a_{1}, \ldots, a_{n} of T, belong to M.
2°) if $\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{i_{i}}}\right)$ belong to M, then $f_{i}\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{i_{i}}}\right)$ belong to M for all $i \in\{1,2, \ldots, s\}$.
3°) each element of M is obtained by applying a number finite of times the rules 1° or 2°.
We will prove several proprieties of these sets M, which will result from the manner in which they were defined. The set M is the representative of a class of recursive sets because in the rules 1° and 2°, by particularizing the elements a_{1}, \ldots, a_{n} respectively f_{1}, \ldots, f_{s} one obtains different sets.

Remark 1: To obtain an element of M, it is necessary to apply initially the rule 1.
(Def. 2) The elements of M are called elements M-recursive.
(Def. 3) One calls order of an element a of M the smallest natural $p \geq 1$ which has the propriety that a is obtained by applying p times the rule 1° or 2°.

One notes M_{p} the set which contains all the elements of order p of M. It is obvious that $M_{1}=\left\{a_{1}, \ldots, a_{n}\right\}$.

$$
M_{2}=\bigcup_{i=1}^{s}\left\{\bigcup_{\left(\alpha_{i}, \ldots, \alpha_{i_{i}}\right) \in M M_{i}^{M i}} f_{i}\left(\alpha_{i_{i}}, \ldots, \alpha_{i_{i}}\right)\right\} \backslash M_{1} .
$$

One withdraws M_{1} because it is possible that $f_{j}\left(a_{j_{1}}, \ldots, a_{j_{n_{j}}}\right)=a_{i}$ which belongs to M_{1}, and thus does not belong to M_{2}.

One proves that for $k \geq 1$ one has:

$$
M_{k+1}=\bigcup_{i=1}^{s}\left\{\bigcup_{\left(\alpha_{i}, \ldots, \alpha_{i_{i}}\right) \in \prod_{k}^{(i)}} f_{i}\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{i_{i}}}\right)\right\} \backslash \bigcup_{h=1}^{k} M_{h}
$$

where each

$$
\prod_{k}^{(i)}=\left\{\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{i_{i}}}\right) / \alpha_{i_{j}} \in M_{q_{j}} \quad j \in\left\{1,2, \ldots, n_{i}\right\} ; 1 \leq q_{j} \leq k\right. \text { and at least an }
$$

element $\left.a_{i_{j_{o}}} \in M_{k}, 1 \leq j_{o} \leq n_{i}\right\}$.

The sets $M_{p}, \quad p \in \mathbb{N}^{*}$, form a partition of the set M.
Theorem 1:

$$
M=\bigcup_{p \in \mathbb{N}^{*}} M_{p}, \text { where } \mathbb{N}^{*}=\{1,2,3, \ldots\}
$$

Proof:
From the rule 1° it results that $M_{1} \subseteq M$.
One supposes that this propriety is true for values which are less than p. It results that $M_{p} \subseteq M$, because M_{p} is obtained by applying the rule 2° to the elements of $\bigcup_{i=1}^{p-1} M_{i}$.

Thus $\bigcup_{p \in \mathbb{N}^{*}} M_{p} \subseteq M$. Reciprocally, one has the inclusion in the contrary sense in accordance with the rule 3°.

Theorem 2: The set M is the smallest set, which has the properties 1° and 2°.
Proof:
Let R be the smallest set having properties 1° and 2°. One will prove that this set is unique.

Let's suppose that there exists another set R^{\prime} having properties 1° and 2°, which is the smallest. Because R is the smallest set having these proprieties, and because R^{\prime} has these properties also, it results that $R \subseteq R^{\prime}$; of an analogue manner, we have $R^{\prime} \subseteq R$: therefore $R=R^{\prime}$.

It is evident that $M^{\prime} \subseteq R$. One supposes that $M_{i} \subseteq R$ for $1 \leq i<p$. Then (rule 3°), and taking in consideration the fact that each element of M_{p} is obtained by applying rule 2^{0} to certain elements of $M_{i}, 1 \leq i<p$, it results that $M_{p} \subseteq R$. Therefore $\bigcup_{p} M_{p} \subseteq R \quad\left(p \in \mathbb{N}^{*}\right)$, thus $M \subseteq R$. And because R is unique, $M=R$.

Remark 2. The theorem 2 replaces the rule 3° of the recursive definition of the set M by: " M is the smallest set that satisfies proprieties 1° and $2^{\circ} "$.

Theorem 3: M is the intersection of all the sets of T which satisfy conditions 1° and 2°.

Proof:
Let T_{12} be the family of all sets of T satisfying the conditions 1° and 2°. We note $I=\bigcap_{A \in T_{12}} A$.
I has the properties 1° and 2° because:

1) For all $i \in\{1,2, \ldots, n\}, a_{i} \in I$, because $a_{i} \in A$ for all A of T_{12}.
2) If $\alpha_{i_{1}}, \ldots, \alpha_{i_{i_{i}}} \in I$, it results that $\alpha_{i_{1}}, \ldots, \alpha_{i_{i_{i}}}$ belong to A that is A of T_{12}. Therefore,
$\forall i \in\{1,2, \ldots, s\}, f_{i}\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{i_{i}}}\right) \in A$ which is A of T_{12}, therefore $f_{i}\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{i_{i}}}\right) \in I$ for all i from $\{1,2, \ldots, s\}$.

From theorem 2 it results that $M \subseteq I$.
Because M satisfies the conditions 1° and 2°, it results that $M \in T_{12}$, from which $I \subseteq M$. Therefore $M=I$
(Def. 4) A set $A \subseteq I$ is called closed for the operation $f_{i_{0}}$ if and only if for all $\alpha_{i_{0} 1}, \ldots, \alpha_{i_{0} n_{i_{0}}}$ of A, one has $f_{i_{0}}\left(\alpha_{i_{0} 1}, \ldots, \alpha_{i_{0} n_{i_{0}}}\right)$ belong to A.
(Def. 5) A set $A \subseteq T$ is called M-recursively closed if and only if:

1) $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq A$.
2) A is closed in respect to operations f_{1}, \ldots, f_{s}.

With these definitions, the precedent theorems become:
Theorem 2': The set M is the smallest M - recursively closed set.
Theorem 3': M is the intersection of all M - recursively closed sets.
(Def. 6) The system of elements $\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle, m \geq 1$ and $\alpha_{i} \in T$ for $i \in\{1,2, \ldots, m\}$, constitute a M-recursive description for the element α, if $\alpha_{m}=\alpha$ and that each $\alpha_{i}(i \in\{1,2, \ldots, m\})$ satisfies at least one of the proprieties:

1) $\alpha_{i} \in\left\{a_{1}, \ldots, a_{n}\right\}$.
2) α_{i} is obtained starting with the elements which precede it in the system by applying the functions $f_{j}, 1 \leq j \leq s$ defined by property 2° of (Def. 1).
(Def. 7) The number m of this system is called the length of the M-recursive description for the element α.

Remark 3: If the element α admits a M-recursive description, then it admits an infinity of such descriptions.

Indeed, if $\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle$ is a M-recursive description of α then $\langle\underbrace{a_{1}, \ldots, a_{1}}_{h \text { times }}, \alpha_{1}, \ldots, \alpha_{m}\rangle$ is also a M-recursive description for α, h being able to take all values from \mathbb{N}.

Theorem 4: The set M is identical with the set of all elements of T which admit a M-recursive description.

Proof: Let D be the set of all elements, which admit a M-recursive description. We will prove by recurrence that $M_{p} \subseteq D$ for all p of \mathbb{N}^{*}.

For $p=1$ we have: $M_{1}=\left\{a_{1}, \ldots, a_{n}\right\}$, and the $a_{j}, 1 \leq j \leq n$, having as $M-$ recursive description: $\left\langle a_{j}\right\rangle$. Thus $M_{1} \subseteq D$. Let's suppose that the property is true for the values smaller than $p . M_{p}$ is obtained by applying the rule 2° to the elements of
$\bigcup_{i=1}^{p-1} M_{i} ; \quad \alpha \in M_{p} \quad$ implies that $\quad \alpha \in f_{j}\left(\alpha_{i_{i}}, \ldots, \alpha_{i_{i_{i}}}\right)$ and $\alpha_{i_{j}} \in M_{h_{j}}$ for $h_{j}<p$ and $1 \leq j \leq n_{i}$.
But $a_{i_{j}}, \quad 1 \leq j \leq n_{i}$, admits M-recursive descriptions according to the hypothesis of recurrence, let's have $\left\langle\beta_{j 1}, \ldots, \beta_{j s_{j}}\right\rangle$. Then $\left\langle\beta_{11}, \ldots, \beta_{1 s_{1}}, \beta_{21}, \ldots, \beta_{2 s_{2}}, \ldots, \beta_{n_{i} 1}, \ldots, \beta_{n_{i} s_{n_{i}}}, \alpha\right\rangle$ constitute a M-recursive description for the element α. Therefore if α belongs to D, then $M_{p} \subseteq D$ which is $M=\bigcup_{p \in \mathbb{N}^{*}} M_{p} \subseteq D$.
Reciprocally, let x belong to D. It admits a M-recursive description $\left\langle b_{1}, \ldots, b_{t}\right\rangle$ with $b_{t}=x$. It results by recurrence by the length of the M-recursive description of the element x, that $x \in M$. For $t=1$ we have $\left\langle b_{1}\right\rangle, b_{1}=x$ and $b_{1} \in\left\{a_{1}, \ldots, a_{n}\right\} \subseteq M$. One supposes that all elements y of D which admit a M-recursive description of a length inferior to t belong to M. Let $x \in D$ be described by a system of length $t:\left\langle b_{1}, \ldots, b_{t}\right\rangle$, $b_{t}=x$. Then $x \in\left\{a_{1}, \ldots, a_{n}\right\} \subseteq M$, where x is obtained by applying the rule 2° to the elements which precede it in the system: b_{1}, \ldots, b_{t-1}. But these elements admit the M recursive descriptions of length which is smaller that $t:\left\langle b_{1}\right\rangle,\left\langle b_{1}, b_{2}\right\rangle, \ldots,\left\langle b_{1}, \ldots, b_{t-1}\right\rangle$. According to the hypothesis of the recurrence, b_{1}, \ldots, b_{t-1} belong to M. Therefore b_{t} belongs also to M. It results that $M \equiv D$.

Theorem 5: Let b_{1}, \ldots, b_{q} be elements of T, which are obtained from the elements a_{1}, \ldots, a_{n} by applying a finite number of times the operations \quad. Then M can be defined recursively in the following mode:

1) Certain elements $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{q}$ of T belong to M.
2) M is closed for the applications f_{i}, with $i \in\{1,2, \ldots, s\}$.
3) Each element of M is obtained by applying a finite number of times the rules (1) or (2) which precede.

Proof: evident. Because b_{1}, \ldots, b_{q} belong to T, and are obtained starting with the elements a_{1}, \ldots, a_{n} of M by applying a finite number of times the operations f_{i}, it results that b_{1}, \ldots, b_{q} belong to M.

Theorem 6: Let's have $g_{j}, \quad 1 \leq j \leq r$, of the operations n_{j}, where $g_{j}: T^{n_{j}} \rightarrow T$ such that M to be closed in rapport to these operations. Then M can be recursively defined in the following manner:

1) Certain elements a_{1}, \ldots, a_{n} de T belong to M.
2) M is closed for the operations $f_{i}, i \in\{1,2, \ldots, s\}$ and $g_{j}, j \in\{1,2, \ldots, r\}$.
3) Each element of M is obtained by applying a finite number of times the precedent rules.
Proof is simple: Because M is closed for the operations g_{j} (with $j \in\{1,2, \ldots, r\}$), one has, that for any $\alpha_{j 1}, \ldots, \alpha_{j n_{j}}$ from $M, g_{j}\left(\alpha_{j 1}, \ldots, \alpha_{j n_{j}}\right) \in M$ for all $j \in\{1,2, \ldots, r\}$.

From the theorems 5 and 6 it results:

Theorem 7: The set M can be recursively defined in the following manner:

1) Certain elements $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{q}$ of T belong to M.
2) M is closed for the operations $f_{i}(i \in\{1,2, \ldots, s\})$ and for the operations g_{j} $(j \in\{1,2, \ldots, r\})$ previously defined.
3) Each element of M is defined by applying a finite number of times the previous 2 rules.
(Def. 8) The operation f_{i} conserves the property P iff for any elements $\alpha_{i 1}, \ldots, \alpha_{i n_{i}}$ having the property $P, f_{i}\left(\alpha_{i 1}, \ldots, \alpha_{i n_{i}}\right)$ has the property P.

Theorem 8: If a_{1}, \ldots, a_{n} have the property P, and if the functions f_{1}, \ldots, f_{s} preserve this property, then all elements of M have the property P.

Poof:
$M=\bigcup_{p \in \mathbb{N}^{*}} M_{p}$. The elements of M_{1} have the property P.
Let's suppose that the elements of M_{i} for $i<p$ have the property P. Then the elements of M_{p} also have this property because M_{p} is obtained by applying the operations $f_{1}, f_{2}, \ldots, f_{s}$ to the elements of: $\bigcup_{i=1} M_{i}$, elements which have the property P. Therefore, for any p of \mathbb{N}, the elements of M_{p} have the property P.

Thus all elements of M have it.
Corollary 1: Let's have the property $P: " x$ can be represented in the form $F(x)$ ".

If a_{1}, \ldots, a_{n} can be represented in the form $F\left(a_{1}\right), \ldots$, respectively $F\left(a_{n}\right)$, and if f_{1}, \ldots, f_{s} maintains the property P, then all elements α of M can be represented in the form $F(\alpha)$.

Remark. One can find more other equivalent def. of M.

2) APPLICATIONS, EXAMPLES.

In applications, certain general notions like: M - recursive element, M-recursive description, M - recursive closed set will be replaced by the attributes which characterize the set M. For example in the theory of recursive functions, one finds notions like: recursive primitive functions, primitive recursive description, primitively recursive closed sets. In this case " M " has been replaced by the attribute "primitive" which characterizes this class of functions, but it can be replaced by the attributes "general", "partial".

By particularizing the rules 1° and 2° of the def. 1 , one obtains several interesting sets:

Example 1: (see [2], pp. 120-122, problem 7.97).
Example 2: The set of terms of a sequence defined by a recurring relation constitutes a recursive set.

Let's consider the sequence: $a_{n+k}=f\left(a_{n}, a_{n+1}, \ldots, a_{n+k-1}\right)$ for all n of \mathbb{N}^{*}, with $a_{i}=a_{i}^{0}, 1 \leq i \leq k$. One will recursively construct the set $A=\left\{a_{m}\right\}_{m \in \mathbb{N}^{*}}$ and one will define in the same time the position of an element in the set A :
$\left.1^{\circ}\right) a_{1}^{0}, \ldots, a_{k}^{0}$ belong to A, and each $a_{i}^{0}(1 \leq i \leq k)$ occupies the position i in the set A;
2°) if $a_{n}, a_{n+1}, \ldots, a_{n+k-1}$ belong to A, and each a_{j} for $n \leq j \leq n+k-1$ occupies the position j in the set A, then $f\left(a_{n}, a_{n+1}, \ldots, a_{n+k-1}\right)$ belongs to A and occupies the position $n+k$ in the set A.
3°) each element of B is obtained by applying a finite number of times the rules 1^{0} or 2°.

Example 3: Let $G=\left\{e, a^{1}, a^{2}, \ldots, a^{p}\right\}$ be a cyclic group generated by the element a. Then (G, \cdot) can be recursively defined in the following manner:
$\left.1^{\circ}\right) a$ belongs to G.
2°) if b and c belong to G then $b \cdot c$ belongs to G.
3°) each element of G is obtained by applying a finite number of times the rules 1 or 2.

Example 4: Each finite set $M L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ can be recursively defined (with $M L \subseteq T):$
1°) The elements $x_{1}, x_{2}, \ldots, x_{n}$ of T belong to $M L$.
2°) If a belongs to $M L$, then $f(a)$ belongs to $M L$, where $f: T \rightarrow T$ such that $f(x)=x$;
3°) Each element of $M L$ is obtained by applying a finite number of times the rules 1° or 2°.

Example 5: Let L be a vectorial space on the commutative corps K and $\left\{x_{1}, \ldots, x_{m}\right\}$ be a base of L. Then L, can be recursively defined in the following manner:
1°) x_{1}, \ldots, x_{m} belong to L;
2°) if x, y belong to L and if a belongs to K, then $x \perp y y$ belong to L and $a * x$ belongs to L;
3°) each element of L is recursively obtained by applying a finite number of times the rules 1° or 2°.
(The operators \perp and $*$ are respectively the internal and external operators of the vectorial space L).

Example 6: Let X be an A-module, and $M \subset X(M \neq \varnothing)$, with $M=\left\{x_{i}\right\}_{i \in I}$. The sub-module generated by M is:

$$
\langle M\rangle=\left\{x \in X / x=a_{1} x_{1}+\ldots+a_{n} x_{n}, \quad a_{i} \in A, \quad x_{i} \in M, \quad i \in\{1, \ldots, n\}\right\}
$$

can be recursively defined in the following way:
1°) for all i of $\{1,2, \ldots, n\},\{1,2, \ldots, n\} \cdot x_{i} \in\langle M\rangle ;$
2°) if x and y belong to $\langle M\rangle$ and a belongs to A, then $x+y$ belongs to $\langle M\rangle$, and $a x$ also;
3°) each element of $\langle M\rangle$ is obtained by applying a finite number of times the rules 1° or 2°.

In accordance to the paragraph 1 of this article, $\langle M\rangle$ is the smallest sub-set of X that verifies the conditions 1° and 2°, that is $\langle M\rangle$ is the smallest sub-module of X that includes $M .\langle M\rangle$ is also the intersection of all the subsets of X that verify the conditions 1° and 2°, that is $\langle M\rangle$ is the intersection of all sub-modules of X that contain M. One also directly refines some classic results from algebra.

One can also talk about sub-groups or ideal generated by a set: one also obtains some important applications in algebra.

Example 7: One also obtains like an application the theory of formal languages, because, like it was mentioned, each regular language (linear at right) is a regular set and reciprocally. But a regular set on an alphabet $\Sigma=\left\{a_{1}, \ldots, a_{n}\right\}$ can be recursively defined in the following way:
$\left.1^{\circ}\right) \varnothing,\{\varepsilon\},\left\{a_{1}\right\}, \ldots,\left\{a_{n}\right\}$ belong to R.
2°) if P and Q belong to R, then $P \cup Q, P Q$, and P^{*} belong to R, with $P \cup Q=\{x / x \in P$ or $x \in Q\} ; \quad P Q=\{x y / x \in P$ and $y \in Q\}, \quad$ and $\quad P^{*}=\bigcup_{n=0}^{\infty} P^{n} \quad$ with $P^{n}=\underbrace{P \cdot P \cdots P}_{n \text { times }}$ and, by convention, $P^{0}=\{\varepsilon\}$.
3°) Nothing else belongs to R other that those which are obtained by using 1° or 2°.

From which many properties of this class of languages with applications to the programming languages will result.

REFERENCES:

[1] C. P. Popovici, L. Livovschi, H. Georgescu. N. Țăndăreanu, "Curs de bazele informaticii (funcții booleene şi circuite combinaționale)", Tipografia Universității din Bucureşti, 1976
[2] F. Smarandache, "Problèmes avec et sans...problèmes!", Somipress, Fès (Morocco), 1983.

