FLORENTIN SMARANDACHE

A General Theorem for The Characterization of N Prime Numbers Simultaneously

In Florentin Smarandache: "Collected Papers", vol. I (second edition). Ann Arbor (USA): InfoLearnQuest, 2007.

[Presented at the 15th American Romanian Academy Annual Convention, which was held in Montréal, Québec, Canada, from June 14-18, 1990, at École Polytechnique de Montréal. Published in "Libertas Mathematica", University of Texas, Alington, Vol. XI, 1991, pp. 151-5]

§1. ABSTRACT. This article presents a necessary and sufficient theorem as *N* numbers, coprime two by two, to be prime simultaneously.

It generalizes V. Popa's theorem [3], as well as I. Cucurezeanu's theorem ([1], p.165), Clement's theorem, S. Patrizio's theorems [2], etc.

Particularly, this General Theorem offers different characterizations for twin primes, for quadruple primes, etc.

§2. INTRODUCTION. It is evident the following:

Lemma 1. Let A, B be nonzero integers. Then:

$$AB \equiv 0 \pmod{pB} \Leftrightarrow A \equiv 0 \pmod{p} \Leftrightarrow A \mid p \text{ is an integer.}$$

Lemma 2.Let
$$(p,q) \sim 1$$
, $(a,p) \sim 1$, $(b,q) \sim 1$.

Then:

$$A \equiv 0 \pmod{p}$$

and

$$B \equiv 0 \pmod{q} \Leftrightarrow aAq + bBp \equiv 0 \pmod{pq} \Leftrightarrow aA + bBp / q \equiv 0 \pmod{p}$$

 $aA / p + bB / q$ is an integer.

Proof:

The first equivalence:

We have $A = K_1 p$ and $B = K_2 q$ with $K_1, K_2 \in \mathbb{Z}$ hence

$$aAq + bBp = (aK_1 + bK_2)pq.$$

Reciprocal: aAq + bBp = Kpq, with $K \in \mathbb{Z}$ it results that $aAq \equiv 0 \pmod{p}$ and $bBp \equiv 0 \pmod{q}$, but from our assumption we find $A \equiv 0 \pmod{p}$ and $B \equiv 0 \pmod{q}$.

The second and third equivalence results from lemma1.

By induction we extend this lemma to the following:

Lemma 3. Let $p_1,...,p_n$ be coprime integers two by two, and let $a_1,...,a_n$ be integer numbers such that $(a_i,p_i) \sim 1$ for all i. Then

$$A_1 \equiv 0 \pmod{p_1}, ..., A_n \equiv 0 \pmod{p_n} \Leftrightarrow$$

$$\Leftrightarrow \sum_{i=1}^{n} a_i A_i \prod_{j \neq i} p_j \equiv 0 \pmod{p_1 ... p_n} \Leftrightarrow$$

$$\Leftrightarrow (P/D) \cdot \sum_{i=1}^{n} (a_i A_i / p_i) \equiv 0 \pmod{P/D},$$

where $P = p_1...p_n$ and D is a divisor of $p \iff \sum_{i=1}^n a_i A_i / p_i$ is an integer.

§3. From this last lemma we can find immediately a GENERAL THEOREM:

Let $P_{ij}, 1 \le i \le n, 1 \le j \le m_i$, be coprime integers two by two, and let $r_1, ..., r_n, a_1, ..., a_n$ be integer numbers such that a_i be coprime with r_i for all i.

The following conditions are considered:

(i) $p_{i_1},...,p_{in_1}$, are simultaneously prime if and only if $c_i \equiv 0 \pmod{r_i}$, for all i.

Then:

The numbers $p_{ii}, 1 \le i \le n, 1 \le j \le m_i$, are simultaneously prime if and only if

(*)
$$(R/D)\sum_{i=1}^{n} (a_i c_i / r_i) \equiv 0 \pmod{R/D}$$
,

where $P = \prod_{i=1}^{n} r_i$ and D is a divisor of R.

Remark:

Often in the conditions (i) the module r_i is equal to $\prod_{j=1}^{m_i} p_{ij}$, or to a divisor of it, and in this case the relation of the General Theorem becomes:

$$(P/D)\sum_{i=1}^{n} (a_i c_i / \prod_{j=1}^{m_i} p_{ij}) \equiv 0 \pmod{P/D}$$

where

$$P = \prod_{i=1}^{n,m_i} p_{ij}$$
 and D is a divisor of P .

Corollaries:

We easily obtain that our last relation is equivalent with:

$$\sum_{i=1}^{n} (a_i c_i (P / \prod_{j=1}^{m_i} p_{ij}) \equiv 0 \pmod{P},$$

and

$$\sum_{i=1}^{n} (a_i c_i / \prod_{j=1}^{m_i} p_{ij}) \text{ is an integer,}$$
etc.

The imposed restrictions for the numbers p_{ij} from the General Theorem are very wide, because if there would be two uncoprime distinct numbers, then at least one from these would not be prime, hence the $m_1 + ... + m_n$ numbers might not be prime.

The General Theorem has many variants in accordance with the assigned values for the parameters $a_1,...,a_n$ and $r_1,...,r_m$, the parameter D, as well as in accordance with the congruences $c_1,...,c_n$ which characterize either a prime number or many other prime numbers simultaneously. We can start from the theorems (conditions c_i) which

characterize a single prime number (see Wilson, Leibnitz, F. Smarandache [4], or Siminov (p is prime if and only if $(p-k)!(k-1)!-(-1)^k\equiv 0 \pmod{p}$, when $p\geq k\geq 1$; here, it is preferable to take k=[(p+1)/2], where [x] represents the gratest integer number $\leq x$, in order that the number (p-k)!(k-1)! be the smallest possibly) for obtaining, by means of the General Theorem, conditions c_j , which characterize many prime numbers simultaneously. Afterwards, from the conditions c_i, c_j , using the General Theorem again, we find new conditions c_n which characterize prime numbers simultaneously. And this method can be continued analogically.

Remarks

Let $m_i = 1$ and c_i represent the Simionov's theorem for all i

- (a) If D=1 it results in V. Popa's theorem, which generalizes in the Cucurezeanu's theorem and the last one generalizes in its turn Clement's theorem!
- (b) If $D = P / p_2$ and choosing convenintly the parameters a_i , k_i for i = 1, 2, 3, it results in S. Patrizio's theorem.

Several Examples:

1. Let $p_1, p_2, ..., p_n$ be positive integers >1, coprime integers two by two, and $1 \le k_i \le p_i$ for all i. Then $p_1, p_2, ..., p_n$ are simultaneously prime if and only if:

2. Another relation example (using the first theorem form [4]: p is a prime positive integer if and only if $(p-3)!-(p-1)/2 \equiv 0 \pmod{p}$

$$\sum_{i=1}^{n} [(p_i - 3)! - (p_i - 1)/2] \cdot p_1 / p_i \equiv 0 \pmod{p_1}$$

3. The odd numbers ... and ... are twin prime if and only if: $(p-1)!(3p+2)+2p+2\equiv 0 \pmod{p(p+2)}$

$$(p-1)!(p+2)-2 \equiv 0 \pmod{p(p+2)}$$

$$[(p-1)!+1]/p+[(p-1)!2+1]/(p+2)$$
 is an integer.

These twin prime characterizations differ from Clement's theorem $((p-1)!4 + p + 4 \equiv 0 \pmod{p(p+2)})$

4. Let $(p, p+k) \sim 1$ then: p and p+k are prime simultaneously if and only if

$$(p-1)!(p+k)+(p+k-1)!p+2p+k \equiv 0 \pmod{p(p+k)},$$

which differs from I. Cucurezeanu's theorem ([1], p. 165):

$$k \cdot k! [(p-1)!+1] + [K!-(-1)^k] p \equiv 0 \pmod{p(p+k)}$$

5. Look at a characterization of a quadruple of primes for p, p + 2, p + 6, p + 8:

$$[(p-1)!+1]/p + [(p-1)!2!+1]/(p+2) + [(p-1)!6!+1]/(p+6) + [(p-1)!8!+1]/(p+8)$$
 be an integer.

6. For p-2, p, p+4 coprime integers tw by two, we find the relation: $(p-1)!+p[(p-3)!+1]/(p-2)+p[(p+3)!+1]/(p+4) \equiv -1 \pmod{p}$,

which differ from S. Patrizio's theorem

$$(8[(p+3)!/(p+4)]+4[(p-3)!/(p-2)] \equiv -11 \pmod{p}$$
.

References

- [1] Cucuruzeanu, I Probleme de aritmetică și teoria numerelor, Ed. Tehnică, Bucharest, 1966.
- [2] Patrizio, Serafino Generalizzazione del teorema di Wilson alle terne prime Enseignement Math., Vol. 22(2), nr. 3-4, pp. 175-184, 1976.
- [3] Popa, Valeriu Asupra unor generalizări ale teoremei lui Clement Studii și Cercetări Matematice, Vol. 24, nr. 9, pp. 1435-1440, 1972.
- [4] Smarandache, Florentin Criterii ca un număr natural să fie prim Gazeta Matematică, nr. 2, pp. 49-52; 1981; see Mathematical Reviews (USA): 83a:10007.