A General Theorem for The Characterization of N Prime Numbers Simultaneously

In Florentin Smarandache: "Collected Papers", vol. I (second edition). Ann Arbor (USA): InfoLearnQuest, 2007.
[Presented at the 15 th American Romanian Academy Annual Convention, which was held in Montréal, Québec, Canada, from June 14-18, 1990, at École Polytechnique de Montréal. Published in "Libertas Mathematica", University of Texas, Alington, Vol. XI, 1991, pp. 151-5]
§1. ABSTRACT. This article presents a necessary and sufficient theorem as N numbers, coprime two by two, to be prime simultaneously.

It generalizes V. Popa's theorem [3], as well as I. Cucurezeanu's theorem ([1], p.165), Clement's theorem, S. Patrizio's theorems [2], etc.

Particularly, this General Theorem offers different characterizations for twin primes, for quadruple primes, etc.
§2. INTRODUCTION. It is evident the following:
Lemma 1. Let A, B be nonzero integers. Then:

$$
A B \equiv 0(\bmod p B) \Leftrightarrow A \equiv 0(\bmod p) \Leftrightarrow A / p \text { is an integer. }
$$

Lemma 2.Let $(p, q) \sim 1,(a, p) \sim 1,(b, q) \sim 1$.
Then:

$$
A \equiv 0(\bmod p)
$$

and

$$
\begin{aligned}
& B \equiv 0(\bmod q) \Leftrightarrow a A q+b B p \equiv 0(\bmod p q) \Leftrightarrow a A+b B p / q \equiv 0(\bmod p) \\
& a A / p+b B / q \text { is an integer. }
\end{aligned}
$$

Proof:
The first equivalence:
We have $A=K_{1} p$ and $B=K_{2} q$ with $K_{1}, K_{2} \in \mathbb{Z}$ hence

$$
a A q+b B p=\left(a K_{1}+b K_{2}\right) p q .
$$

Reciprocal: $a A q+b B p=K p q$, with $K \in \mathbb{Z}$ it rezults that $a A q \equiv 0(\bmod p)$ and $b B p \equiv 0(\bmod q)$, but from our assumption we find $A \equiv 0(\bmod p)$ and $B \equiv 0(\bmod q)$.
The second and third equivalence results from lemma1.
By induction we extend this lemma to the following:
Lemma 3. Let p_{1}, \ldots, p_{n} be coprime integers two by two, and let a_{1}, \ldots, a_{n} be integer numbers such that $\left(a_{i}, p_{i}\right) \sim 1$ for all i. Then

$$
\begin{aligned}
& A_{1} \equiv 0\left(\bmod p_{1}\right), \ldots, A_{n} \equiv 0\left(\bmod p_{n}\right) \Leftrightarrow \\
& \Leftrightarrow \sum_{i=1}^{n} a_{i} A_{i} \prod_{j \neq i} p_{j} \equiv 0\left(\bmod p_{1} \ldots p_{n}\right) \Leftrightarrow \\
& \Leftrightarrow(P / D) \cdot \sum_{i=1}^{n}\left(a_{i} A_{i} / p_{i}\right) \equiv 0(\bmod P / D),
\end{aligned}
$$

where $P=p_{1} \ldots p_{n}$ and D is a divisor of $p \Leftrightarrow \sum_{i=1}^{n} a_{i} A_{i} / p_{i}$ is an integer.
§3. From this last lemma we can find immediately a GENERAL THEOREM:
Let $P_{i j}, 1 \leq i \leq n, 1 \leq j \leq m_{i}$, be coprime integers two by two, and let $r_{1}, \ldots, r_{n}, a_{1}, \ldots, a_{n}$ be integer numbers such that a_{i} be coprime with r_{i} for all i.

The following conditions are considered:
(i) $\quad p_{i_{1}}, \ldots, p_{i i_{1}}$, are simultaneously prime if and only if $c_{i} \equiv 0\left(\bmod r_{i}\right)$, for all i.

Then:
The numbers $p_{i j}, 1 \leq i \leq n, 1 \leq j \leq m_{i}$, are simultaneously prime if and only if
$\left({ }^{*}\right) \quad(R / D) \sum_{i=1}^{n}\left(a_{i} c_{i} / r_{i}\right) \equiv 0(\bmod R / D)$,
where $P=\prod_{i=1}^{n} r_{i}$ and D is a divisor of R.

Remark:

Often in the conditions (i) the module r_{i} is equal to $\prod_{j=1}^{m_{i}} p_{i j}$, or to a divisor of it, and in this case the relation of the General Theorem becomes:

$$
(P / D) \sum_{i=1}^{n}\left(a_{i} c_{i} / \prod_{j=1}^{m_{i}} p_{i j}\right) \equiv 0(\bmod P / D)
$$

where

$$
P=\prod_{i, j=1}^{n, m_{i}} p_{i j} \text { and } D \text { is a divisor of } P
$$

Corollaries:

We easily obtain that our last relation is equivalent with:

$$
\sum_{i=1}^{n}\left(a_{i} c_{i}\left(P / \prod_{j=1}^{m_{i}} p_{i j}\right) \equiv 0(\bmod P)\right.
$$

and

$$
\sum_{i=1}^{n}\left(a_{i} c_{i} / \prod_{j=1}^{m_{i}} p_{i j}\right) \text { is an integer }
$$

etc.
The imposed restrictions for the numbers $p_{i j}$ from the General Theorem are very wide, because if there would be two uncoprime distinct numbers, then at least one from these would not be prime, hence the $m_{1}+\ldots+m_{n}$ numbers might not be prime.

The General Theorem has many variants in accordance with the assigned values for the parameters a_{1}, \ldots, a_{n} and r_{1}, \ldots, r_{m}, the parameter D, as well as in accordance with the congruences c_{1}, \ldots, c_{n} which characterize either a prime number or many other prime numbers simultaneously. We can start from the theorems (conditions c_{i}) which
characterize a single prime number (see Wilson, Leibnitz, F. Smarandache [4], or Siminov $\left(p\right.$ is prime if and only if $(p-k)!(k-1)!-(-1)^{k} \equiv 0(\bmod p)$, when $p \geq k \geq 1$; here, it is preferable to take $k=[(p+1) / 2]$, where $[x]$ represents the gratest integer number $\leq x$, in order that the number $(p-k)!(k-1)$! be the smallest possibly) for obtaining, by means of the General Theorem, conditions c_{j}^{\prime}, which characterize many prime numbers simultaneously. Afterwards, from the conditions c_{i}, c_{j}^{\prime}, using the General Theorem again, we find new conditions $c_{h}^{\prime \prime}$ which characterize prime numbers simultaneously. And this method can be continued analogically.

Remarks

Let $m_{i}=1$ and c_{i} represent the Simionov's theorem for all i
(a) If $D=1$ it results in V. Popa's theorem, which generalizes in the Cucurezeanu's theorem and the last one generalizes in its turn Clement's theorem!
(b) If $D=P / p_{2}$ and choosing convenintly the parameters a_{i}, k_{i} for $i=1,2,3$, it results in S. Patrizio's theorem.

Several Examples:

1. Let $p_{1}, p_{2}, \ldots, p_{n}$ be positive integers >1, coprime integers two by two, and $1 \leq k_{i} \leq p_{i}$ for all i. Then $p_{1}, p_{2}, \ldots, p_{n}$ are simultaneously prime if and only if:
(T) $\sum_{i=1}^{n}\left[\left(p_{i}-k_{i}\right)!\left(k_{i}-1\right)!-(-1)^{k_{i}}\right] \cdot \prod_{j \neq i} p_{i} \equiv 0\left(\bmod p_{1} p_{2} \ldots p_{n}\right)$
or
(U) $\sum_{i=1}^{n}\left[\left(p_{i}-k_{i}\right)!\left(k_{i}-1\right)!-(-1)^{k_{i}}\right] \cdot \prod_{j \neq i} p_{i} /\left(p_{s+1} \ldots p_{n}\right) \equiv 0\left(\bmod p_{1} \ldots p_{s}\right)$
or
(V) $\sum_{i=1}^{n}\left[\left(p_{i}-k_{i}\right)!\left(k_{i}-1\right)!-(-1)^{k_{i}}\right] \cdot p_{j} / p_{i} \equiv 0\left(\bmod p_{j}\right)$
or
(W) $\sum_{i=1}^{n}\left[\left(p_{i}-k_{i}\right)!\left(k_{i}-1\right)!-(-1)^{k_{i}}\right] \cdot p_{j} / p_{i}$ is an integer.
2. Another relation example (using the first theorem form [4]: p is a prime positive integer if and only if $(p-3)!-(p-1) / 2 \equiv 0(\bmod p)$

$$
\sum_{i=1}^{n}\left[\left(p_{i}-3\right)!-\left(p_{i}-1\right) / 2\right] \cdot p_{1} / p_{i} \equiv 0\left(\bmod p_{1}\right)
$$

3. The odd numbers \ldots and \ldots are twin prime if and only if: $(p-1)!(3 p+2)+2 p+2 \equiv 0(\bmod p(p+2))$
or
$(p-1)!(p+2)-2 \equiv 0(\bmod p(p+2))$
or
$[(p-1)!+1] / p+[(p-1)!2+1] /(p+2)$ is an integer.
These twin prime characterzations differ from Clement's theorem $((p-1)!4+p+4 \equiv 0(\bmod p(p+2)))$
4. Let $(p, p+k) \sim 1$ then: p and $p+k$ are prime simultaneously if and only if

$$
(p-1)!(p+k)+(p+k-1)!p+2 p+k \equiv 0(\bmod p(p+k)),
$$

which differs from I. Cucurezeanu's theorem ([1], p. 165):

$$
k \cdot k![(p-1)!+1]+\left[K!-(-1)^{k}\right] p \equiv 0(\bmod p(p+k))
$$

5. Look at a characterization of a quadruple of primes for $p, p+2, p+6, p+8$:
$[(p-1)!+1] / p+[(p-1)!2!+1] /(p+2)+[(p-1)!6!+1] /(p+6)+[(p-1)!8!+1] /(p+8)$
be an integer.
6. For $p-2, p, p+4$ coprime integers tw by two, we find the relation:

$$
(p-1)!+p[(p-3)!+1] /(p-2)+p[(p+3)!+1] /(p+4) \equiv-1(\bmod p),
$$

which differ from S . Patrizio's theorem

$$
(8[(p+3)!/(p+4)]+4[(p-3)!/(p-2)] \equiv-11(\bmod p)) .
$$

References

[1] Cucuruzeanu, I - Probleme de aritmetică şi teoria numerelor, Ed. Tehnică, Bucharest, 1966.
[2] Patrizio, Serafino - Generalizzazione del teorema di Wilson alle terne prime - Enseignement Math., Vol. 22(2), nr. 3-4, pp. 175-184, 1976.
[3] Popa, Valeriu - Asupra unor generalizări ale teoremei lui Clement - Studii şi Cercetări Matematice, Vol. 24, nr. 9, pp. 1435-1440, 1972.
[4] Smarandache, Florentin - Criterii ca un număr natural să fie prim - Gazeta Matematică, nr. 2, pp. 49-52; 1981; see Mathematical Reviews (USA): 83a:10007.

