FLORENTIN SMARANDACHE

A Generalization in Space of Jung's Theorem

In this short note we will prove a generalization of Joung's theorem in space.
Theorem. Let us have n points in space such that the maximum distance between any two points is a. Prove that there exists a sphere of radius $r \leq a \frac{\sqrt{6}}{4}$ that contains in its interior or on its surface all these points.

Proof:

Let P_{1}, \ldots, P_{n}. be the points. Let $S_{1}\left(O_{1}, r_{1}\right)$ be a sphere of center O_{1} and radius r_{1}, which contains all these points. We note $r_{2}=\max _{1 \leq i \leq n} P_{i} O_{1}=P_{1} O_{1}$ and construct the sphere $S_{2}\left(O_{1}, r_{2}\right), r_{2} \leq r_{1}$, with $P_{1} \in \operatorname{Fr}\left(S_{2}\right)$, where $\operatorname{Fr}\left(S_{2}\right)=$ frontier (surface) of S_{2}.

We apply a homothety H in space, of center P_{1}, such that the new sphere $H\left(S_{2}\right)=S_{3}\left(O_{3}, r_{3}\right)$ has the property: $\operatorname{Fr}\left(S_{3}\right)$ contains another point, for example P_{2}, and of course S_{3} contains all points P_{i}.

1) If P_{1}, P_{2} are diametrically opposite in S_{3} then $r_{\min }=\frac{a}{2}$.

If no, we do a rotation R so that $R\left(S_{3}\right)=S_{4}\left(O_{4}, r_{4}\right)$ for which $\left\{P_{3}, P_{2}, P_{1}\right\} \subset \operatorname{Fr}\left(S_{4}\right)$ and S_{4} contains all points P_{i}.
2) If $\left\{P_{1}, P_{2}, P_{3}\right\}$ belong to a great circle of S_{4} and they are not included in an open semicircle, then $r_{\text {min }} \leq \frac{a}{\sqrt{3}}$ (Jung's theorem).

If no, we consider the fascicule of spheres S for which $\left\{P_{1}, P_{2}, P_{3}\right\} \subset \operatorname{Fr}(S)$ and S contains all points P_{i}. We choose a sphere S_{5} such that $\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\} \subset \operatorname{Fr}\left(S_{5}\right)$.
3) If $\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ are not included in an open semisphere of S_{5}, then the tetrahedron $\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ can be included in a regulated tetrahedron of side a, whence we find that the radius of S_{5} is $\leq a \frac{\sqrt{6}}{4}$.

If no, let's note. $\max _{1 \leq i \leq j \leq 4} P_{i} P_{j}=P_{1} P_{4}$. Does the sphere S_{6} of diameter $P_{1} P_{4}$ contain all points P_{i} ?

If yes, stop (we are in the case 1).
If no, we consider the fascicule of spheres S^{\prime} such that $\left\{P_{1}, P_{4}\right\} \subset F r\left(S^{\prime}\right)$ and S^{\prime} contains all the points P_{i}. We choose another sphere S_{7}, for which $P_{5} \notin\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ and $P_{5} \in \operatorname{Fr}\left(S_{7}\right)$.

With these new notations (the points P_{1}, P_{4}, P_{5} and the sphere S_{7}) we return to the case 2.

This algorithm is finite; therefore it constructs the required sphere.
[Published in "GAZETA MATEMATICA", Nr. 9-10-11-12, 1992, Bucharest, Romania, p. 352.]

