FLORENTIN SMARANDACHE
A Generalization of the Inequality of Minkowski

In Florentin Smarandache: "Collected Papers", vol. I (second edition). Ann Arbor (USA): InfoLearnQuest, 2007.

Theorem : If p is a real number ≥ 1 and $a_{i}^{(k)} \in \mathbf{R}^{+}$with $i \in\{1,2, \ldots, n\}$ and $k \in\{1,2, \ldots, m\}$, then:

$$
\left(\sum_{i=1}^{n}\left(\sum_{k=1}^{m} a_{i}^{(k)}\right)^{p}\right)^{1 / p} \leq\left(\sum_{k=1}^{m}\left(\sum_{i=1}^{n} a_{i}^{(k)}\right)^{p}\right)^{1 / p}
$$

Demonstration by recurrence on $m \in \mathbf{N}^{*}$.
First of all one shows that:

$$
\left(\sum_{i=1}^{n}\left(a_{i}^{(1)}\right)^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{n}\left(a_{i}^{(1)}\right)^{p}\right)^{1 / p}, \text { which is obvious, and proves that the inequality }
$$

is true for $m=1$.
(The case $m=2$ precisely constitutes the inequality of Minkowski, which is naturally true!).

Let us suppose that the inequality is true for all the values less or equal to m

$$
\begin{aligned}
& \left(\sum_{i=1}^{n}\left(\sum_{k=1}^{m+1} a_{i}^{(k)}\right)^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{n} a_{i}^{(1)^{p}}\right)^{1 / p}+\left(\sum_{i=1}^{n}\left(\sum_{k=2}^{m+1} a_{i}^{(k)}\right)^{p}\right)^{1 / p} \leq \\
& \leq\left(\sum_{i=1}^{n}\left(a_{i}^{(1)}\right)^{p}\right)^{1 / p}+\left(\sum_{k=2}^{m+1}\left(\sum_{i=1}^{n} a_{i}^{(k)}\right)^{p}\right)^{1 / p}
\end{aligned}
$$

and this last sum is $\left(\sum_{k=1}^{m+1}\left(\sum_{i=1}^{n} a_{i}^{(k)}\right)^{p}\right)^{1 / p}$ therefore the inequality is true for the level $m+1$.

