FLORENTIN SMARANDACHE
 A Generalization of a Theorem of Carnot

In Florentin Smarandache: "Collected Papers", vol. I (second edition). Ann Arbor (USA): InfoLearnQuest, 2007.

Theorem of Carnot: Let M be a point on the diagonal $A C$ of an arbitrary quadrilateral $A B C D$. Through M one draws a line which intersects $A B$ in α and $B C$ in β. Let us draw another line, which intersects $C D$ in γ and $A D$ in δ. Then one has:

$$
\frac{A \alpha}{B \alpha} \cdot \frac{B \beta}{C \beta} \cdot \frac{C \gamma}{D \gamma} \cdot \frac{D \delta}{A \delta}=1
$$

Generalization: Let $A_{1} \ldots A_{n}$ be a polygon. On a diagonal $A_{1} A_{k}$ of this polygon one takes a point M through which one draws a line d_{1} which intersects the lines $A_{1} A_{2}, A_{2} A_{3}, \ldots, A_{k-1} A_{k}$ respectively in the points $P_{1}, P_{2}, \ldots, P_{k-1}$ and another line d_{2} intersects the other lines $A_{k} A_{k+1}, \ldots, A_{n-1} A_{n}, A_{n} A_{1}$ respectively in the points $P_{k}, \ldots, P_{n-1}, P_{n}$. Then one has:

$$
\prod_{i=1}^{n} \frac{A_{i} P_{i}}{A_{\varphi(i)} P_{i}}=1,
$$

where φ is the circular permutation

$$
\left(\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \\
2 & 3 & \ldots & n & 1
\end{array}\right)
$$

Proof:
Let us have $1 \leq j \leq k-1$. One easily shows that:

$$
\frac{A_{j} P_{j}}{A_{j+1} P_{j}}=\frac{D\left(A_{j}, d_{1}\right)}{D\left(A_{j+1}, d_{1}\right)}
$$

where $D(A, d)$ represents the distance from the point A to the line d, since the triangles $P_{j} A_{j} A_{j}^{\prime}$ and $P_{j} A_{j+1} A_{j+1}^{\prime}$ are similar. (One notes with A_{j}^{\prime} and A_{j+1}^{\prime} the projections of the points A_{j} and A_{j+1} on the line d_{1}).

It results from it that:

$$
\frac{A_{1} P_{1}}{A_{2} P_{1}} \cdot \frac{A_{2} P_{2}}{A_{3} P_{2}} \cdots \frac{A_{k-1} P_{k-1}}{A_{k} P_{k-1}}=\frac{D\left(A_{1}, d_{1}\right)}{D\left(A_{2}, d_{1}\right)} \cdot \frac{D\left(A_{2}, d_{1}\right)}{D\left(A_{3}, d_{1}\right)} \cdots \frac{D\left(A_{k-1}, d_{1}\right)}{D\left(A_{k}, d_{1}\right)}=\frac{D\left(A_{1}, d_{1}\right)}{D\left(A_{k}, d_{1}\right)}
$$

In a similar way, for $k \leq h \leq n$ one has:

$$
\frac{A_{h} P_{h}}{A_{\varphi(h)} P_{h}}=\frac{D\left(A_{h}, d_{2}\right)}{D\left(A_{\varphi(h)}, d_{2}\right)}
$$

and

$$
\prod_{h=k}^{n} \frac{A_{h} P_{h}}{A_{\varphi(h)} P_{h}}=\frac{D\left(A_{k}, d_{2}\right)}{D\left(A_{1}, d_{2}\right)}
$$

The product of the theorem is equal to:

$$
\frac{D\left(A_{1}, d_{1}\right)}{D\left(A_{k}, d_{1}\right)} \cdot \frac{D\left(A_{k}, d_{2}\right)}{D\left(A_{1}, d_{2}\right)},
$$

but

$$
\frac{D\left(A_{1}, d_{1}\right)}{D\left(A_{k}, d_{1}\right)}=\frac{A_{1} M}{A_{k} M}
$$

since the triangles $M A_{1} A_{1}^{\prime}$ and $M A_{k} A_{k}^{\prime}$ are similar. In the same way, because the triangles $M A_{1} A_{1}^{\prime \prime}$ and $M A_{k} A_{k}^{\prime \prime}$ are similar (one notes with $A_{1}^{\prime \prime}$ and $A_{k}^{\prime \prime}$ the respective projections of A_{1} and A_{k} on the line d_{2}), one has:

$$
\frac{D\left(A_{k}, d_{2}\right)}{D\left(A_{1}, d_{2}\right)}=\frac{A_{k} M}{A_{1} M} .
$$

The product from the statement is therefore equal to 1 .
Remark: If one replaces n by 4 in this theorem, one finds the theorem of Carnot.

