FLORENTIN SMARANDACHE

A Generalization of Euler's
 Theorem

In Florentin Smarandache: "Collected Papers", vol. I (second edition). Ann Arbor (USA): InfoLearnQuest, 2007.

In the paragraphs which follow we will prove a result which replaces the theorem of Euler:
"If $(a, m)=1$, then $a^{\varphi(m)} \equiv 1(\bmod m) "$,
for the case when a and m are not relative prime.

Introductory concepts.

One supposes that $m>0$. This assumption will not affect the generalization, because Euler's indicator satisfies the equality:
$\varphi(m)=\varphi(-m)$ (see [1]), and that the congruencies verify the following property:
$a \equiv b(\bmod m) \Leftrightarrow a \equiv b(\bmod (-m))($ see $[1] \operatorname{pp} 12-13)$.
In the case of congruence modulo 0 , there is the relation of equality. One denotes (a, b) the greater common factor of the two integers a and b, and one chooses $(a, b)>0$.

B - Lemmas, theorem.

Lemma 1: Let be a an integer and m a natural number >0. There exist d_{0}, m_{0} from \mathbf{N} such that $a=a_{0} d_{0}, m=m_{0} d_{0}$ and $\left(a_{0}, m_{0}\right)=1$.

Proof:

It is sufficient to choose $d_{0}=(a, m)$. In accordance with the definition of the greatest common factor (GCF), the quotients of a_{0} and m_{0} and of a and m by their TGFC are relative prime (of [3] pp 25-26).

Lemma 2: With the notations of lemma 1 , if $d_{0} \neq 1$ and if:
$d_{0}=d_{0}^{1} d_{1}, m_{0}=m_{1} d_{1},\left(d_{0}^{1}, m_{1}\right)=1$ and $d_{1} \neq 1$, then $d_{0}>d_{1}$ and $m_{0}>m_{1}$, and if $d_{0}=d_{1}$, then after a limited number of steps i one has $d_{0}>d_{i+1}=\left(d_{i}, m_{i}\right)$.

Proof:

$$
\begin{aligned}
& \text { (0) }\left\{\begin{array}{lll}
a=a_{0} d_{0} & ; & \left(a_{0}, m_{0}\right)=1 \\
m=m_{0} d_{0} & ; & d_{0} \neq 1
\end{array}\right. \\
& \text { (1) }\left\{\begin{array}{lll}
d_{0}=d_{0}^{1} d_{1} & ; & \left(d_{0}^{1}, m_{1}\right)=1 \\
m_{0}=m_{1} d_{1} & ; & d_{1} \neq 1
\end{array}\right.
\end{aligned}
$$

From (0) and from (1) it results that $a=a_{0} d_{0}=a_{0} d_{0}^{1} d_{1}$ therefore $d_{0}=d_{0}^{1} d_{1}$ thus $d_{0}>d_{1}$ if $d_{0}^{1} \neq 1$.

From $m_{0}=m_{1} d_{1}$ we deduct that $m_{0}>m_{1}$.
If $d_{0}=d_{1}$ then $m_{0}=m_{1} d_{0}=k \cdot d_{0}^{z}\left(z \in \mathbf{N}^{*}\right.$ and $\left.d_{0} \nmid k\right)$.

Therefore $m_{1}=k \cdot d_{0}^{z-1} ; \quad d_{2}=\left(d_{1}, m_{1}\right)=\left(d_{0}, k \cdot d_{0}^{z-1}\right)$. After the $i=z$ step, it results $d_{i+1}=\left(d_{0}, k\right)<d_{0}$.

Lemma 3: For each integer a and for each natural number $m>0$ one can build the following sequence of relations:

$$
\left.\begin{array}{l}
\text { (0) }\left\{\begin{array}{lll}
a=a_{0} d_{0} ; & \left(a_{0}, m_{0}\right)=1 \\
m=m_{0} d_{0} ; & d_{0} \neq 1
\end{array}\right. \\
\text { (1) } \begin{cases}d_{0}=d_{0}^{1} d_{1} ; & \left(d_{0}^{1}, m_{1}\right)=1 \\
m_{0}=m_{1} d_{1} ; & d_{1} \neq 1\end{cases} \\
\ldots \ldots
\end{array}\right] \begin{aligned}
& (s-1) \begin{cases}d_{s-2}=d_{s-2}^{1} d_{s-1} ; & \left(d_{s-2}^{1}, m_{s-1}\right)=1 \\
m_{s-2}=m_{s-1} d_{s-1} ; & d_{s-1} \neq 1\end{cases} \\
& (s) \begin{cases}d_{s-1}=d_{s-1}^{1} d_{s} ; & \left(d_{s-1}^{1}, m_{s}\right)=1 \\
m_{s-1}=m_{s} d_{s} ; & d_{s} \neq 1\end{cases}
\end{aligned}
$$

Proof:
One can build this sequence by applying lemma 1 . The sequence is limited, according to lemma 2, because after r_{1} steps, one has $d_{0}>d_{r_{1}}$ and $m_{0}>m_{r_{1}}$, and after r_{2} steps, one has $d_{r_{1}}>d_{r_{1}+r_{2}}$ and $m_{r_{1}}>m_{r_{1}+r_{2}}$, etc., and the m_{i} are natural numbers. One arrives at $d_{s}=1$ because if $d_{s} \neq 1$ one will construct again a limited number of relations $(s+1), \ldots,(s+r)$ with $d_{s+r}<d_{s}$.

Theorem: Let us have $a, m \in \mathbf{Z}$ and $\mathrm{m} \neq 0$. Then $a^{\varphi\left(m_{s}\right)+s} \equiv a^{s}(\bmod m)$ where s and m_{s} are the same ones as in the lemmas above.

Proof:

Similar with the method followed previously, one can suppose $m>0$ without reducing the generality. From the sequence of relations from lemma 3, it results that:
(0) (1)
(2)
(3) (s)
$a=a_{0} d_{0}=a_{0} d_{0}^{1} d_{1}=a_{0} d_{0}^{1} d_{1}^{1} d_{2}=\ldots=a_{0} d_{0}^{1} d_{1}^{1} \ldots d_{s-1}^{1} d_{s}$
and
(0)
(1)
(2)
(3) (s)
$m=m_{0} d_{0}=m_{1} d_{1} d_{0}=m_{2} d_{2} d_{1} d_{0}=\ldots=m_{s} d_{s} d_{s-1} \ldots d_{1} d_{0}$
and
$m_{s} d_{s} d_{s-1} \ldots d_{1} d_{0}=d_{0} d_{1} \ldots d_{s-1} d_{s} m_{s}$.

From (0) it results that $d_{0}=(a, m)$, and of (i) that $d_{i}=\left(d_{i-1}, m_{i-1}\right)$, for all i from $\{1,2, \ldots, s\}$.
$d_{0}=d_{0}^{1} d_{1}^{1} d_{2}^{1} \ldots \ldots . d_{s-1}^{1} d_{s}$
$d_{1}=d_{1}^{1} d_{2}^{1} \ldots \ldots . . d_{s-1}^{1} d_{s}$
$d_{s-1}=\quad d_{s-1}^{1} d_{s}$
$d_{s}=\quad d_{s}$
Therefore $d_{0} d_{1} d_{2} \ldots \ldots . . d_{s-1} d_{s}=\left(d_{0}^{1}\right)^{1}\left(d_{1}^{1}\right)^{2}\left(d_{2}^{1}\right)^{3} \ldots\left(d_{s-1}^{1}\right)^{s}\left(d_{s}^{1}\right)^{s+1}=\left(d_{0}^{1}\right)^{1}\left(d_{1}^{1}\right)^{2}\left(d_{2}^{1}\right)^{3} \ldots\left(d_{s-1}^{1}\right)^{s}$ because $d_{s}=1$.
Thus $m=\left(d_{0}^{1}\right)^{1}\left(d_{1}^{1}\right)^{2}\left(d_{2}^{1}\right)^{3} \ldots\left(d_{s-1}^{1}\right)^{s} \cdot m_{s}$;
therefore $m_{s} \mid m$;
(s)
(s)
$\left(d_{s}, m_{s}\right)=\left(1, m_{s}\right)$ and $\left(d_{s-1}^{1}, m_{s}\right)=1$
($\mathrm{s}-1$)
$1=\left(d_{s-2}^{1}, m_{s-1}\right)=\left(d_{s-2}^{1}, m_{s} d_{s}\right)$ therefore $\left(d_{s-2}^{1}, m_{s}\right)=1$
$1=\left(d_{s-3}^{1}, m_{s-2}\right)=\left(d_{s-3}^{1}, m_{s-1} d_{s-1}\right)=\left(d_{s-3}^{1}, m_{s} d_{s} d_{s-1}\right)$ therefore $\left(d_{s-3}^{1}, m_{s}\right)=1$
(i+1)

$$
1=\left(d_{i}^{1}, m_{i+1}\right)=\left(d_{i}^{1}, m_{i+1} d_{i+2}\right)=\left(d_{i}^{1}, m_{i+3} d_{i+3} d_{i+2}\right)=\ldots=
$$

$=\left(d_{i}^{1}, m_{s} d_{s} d_{s-1} \ldots d_{i+2}\right)$ thus $\left(d_{i}^{1}, m_{s}\right)=1$, and this is for all i from $\{0,1, \ldots, s-2\}$.
(0)
$1=\left(a_{0}, m_{0}\right)=\left(a_{0}, d_{1} \ldots d_{s-1} d_{s} m_{s}\right)$ thus $\left(a_{0}, m_{s}\right)=1$.
From the Euler's theorem results that:
$\left(d_{i}^{1}\right)^{\varphi\left(m_{s}\right)} \equiv 1\left(\bmod m_{s}\right)$ for all i from $\{0,1, \ldots, s\}$,
$a_{0}{ }^{\mathrm{\varphi}\left(m_{s}\right)} \equiv 1\left(\bmod m_{s}\right)$
but $a_{0}{ }^{\varrho\left(m_{s}\right)}=a_{0}{ }^{\varrho\left(m_{s}\right)}\left(d_{0}^{1}\right)^{\varphi\left(m_{s}\right)}\left(d_{1}^{1}\right)^{\varphi\left(m_{s}\right)} \ldots\left(d_{s-1}^{1}\right)^{\varphi\left(m_{s}\right)}$
therefore $a^{\varphi\left(m_{s}\right)} \equiv \underbrace{1 \ldots \ldots . .1}_{s+1 \text { times }}\left(\bmod m_{s}\right)$
$a^{\varphi\left(m_{s}\right)} \equiv 1\left(\bmod m_{s}\right)$.
$a_{0}^{s}\left(d_{0}^{1}\right)^{s-1}\left(d_{1}^{1}\right)^{s-2}\left(d_{2}^{1}\right)^{s-3} \ldots\left(d_{s-2}^{1}\right)^{1} \cdot a^{\varphi\left(m_{s}\right)} \equiv a_{0}^{s}\left(d_{0}^{1}\right)^{s-1}\left(d_{1}^{1}\right)^{s-2} \ldots\left(d_{s-2}^{1}\right)^{1} \cdot 1\left(\bmod m_{s}\right)$.
Multiplying by:
$\left(d_{0}^{1}\right)^{1}\left(d_{1}^{1}\right)^{2}\left(d_{2}^{1}\right)^{3} \ldots\left(d_{s-2}^{1}\right)^{s-1}\left(d_{s-1}^{1}\right)^{s}$ we obtain:
$a_{0}^{s}\left(d_{0}^{1}\right)^{s}\left(d_{1}^{1}\right)^{s} \ldots\left(d_{s-2}^{1}\right)^{s}\left(d_{s-1}^{1}\right)^{s} a^{\varphi\left(m_{s}\right)} \equiv$
$\equiv a_{0}^{s}\left(d_{0}^{1}\right)^{s}\left(d_{1}^{1}\right)^{s} \ldots\left(d_{s-2}^{1}\right)^{s}\left(d_{s-1}^{1}\right)^{s}\left(\bmod \left(d_{0}^{1}\right)^{1} \ldots\left(d_{s-1}^{1}\right)^{s} m_{s}\right)$
but $a_{0}^{s}\left(d_{0}^{1}\right)^{s}\left(d_{1}^{1}\right)^{s} \ldots\left(d_{s-1}^{1}\right)^{s} \cdot a^{\varphi\left(m_{s}\right)}=a^{\varphi\left(m_{s}\right)+s}$ and $a_{0}^{s}\left(d_{0}^{1}\right)^{s}\left(d_{1}^{1}\right)^{s} \ldots\left(d_{s-1}^{1}\right)^{s}=a^{s}$ therefore $a^{\varphi\left(m_{s}\right)+s} \equiv a^{s}(\bmod m)$, for all a, m from $\mathbf{Z}(\mathrm{m} \neq 0)$.

Observations:

If $(a, m)=1$ then $d=1$. Thus $s=0$, and according to the theorem one has $a^{\varphi\left(m_{0}\right)+0} \equiv a^{0}(\bmod m)$ therefore $a^{\varphi\left(m_{0}\right)+0} \equiv 1(\bmod m)$.
But $m=m_{0} d_{0}=m_{0} \cdot 1=m_{0}$. Thus:
$a^{\varphi(m)} \equiv 1(\bmod m)$, and one obtains Euler's theorem.
Let us have a and m two integers, $m \neq 0$ and $(a, m)=d_{0} \neq 1$, and $m=m_{0} d_{0}$. If $\left(d_{0}, m_{0}\right)=1$, then $a^{\varphi\left(m_{0}\right)+1} \equiv a(\bmod m)$.
Which, in fact, it results from the theorem with $s=1$ and $m_{1}=m_{0}$.
This relation has a similar form to Fermat's theorem:
$a^{\varphi(p)+1} \equiv a(\bmod p)$.

C - AN ALGORITHM TO SOLVE CONGRUENCIES

One will construct an algorithm and will show the logic diagram allowing to calculate s and m_{s} of the theorem.

Given as input: two integers a and $m, m \neq 0$.
It results as output: s and m_{s} such that $a^{\mathrm{\varphi}\left(m_{s}\right)+s} \equiv a^{s}(\bmod m)$.

Method:

(1) $A:=a$
$M:=m$
$i:=0$
(2) Calculate $d=(A, M)$ and $M^{\prime}=M / d$.
(3) If $d=1$ take $S=i$ and $m_{s}=M^{\prime}$ stop.

If $d \neq 1$ take $A:=d, M=M^{\prime}$
$i:=i+1$, and go to (2).
Remark: the accuracy of the algorithm results from lemma 3 end from the theorem.
See the flow chart on the following page.
In this flow chart, the SUBROUTINE LCD calculates $D=(A, M)$ and chooses $D>0$.

Application: In the resolution of the exercises one uses the theorem and the algorithm to calculate s and m_{s}.

Example: $6^{25604} \equiv ?(\bmod 105765)$
One cannot apply Fermat or Euler because $(6,105765)=3 \neq 1$. One thus applies the algorithm to calculate s and m_{s} and then the previous theorem:
$d_{0}=(6,105765)=3 \quad m_{0}=105765 / 3=35255$
$i=0 ; 3 \neq 1$ thus $i=0+1=1, d_{1}=(3,35255)=1, m_{1}=35255 / 1=35255$.
Therefore $6^{\phi(35255)+1} \equiv 6^{1}(\bmod 105765)$ thus $6^{25604} \equiv 6^{4}(\bmod 105765)$.

REFERENCES:

[1] Popovici, Constantin P. - "Teoria numerelor", Curs, Bucharest, Editura didactic si pedagogica, 1973.
[2] Popovici, Constantin P - "Logica si teoria numerelor", Editura didactica si pedagogica, Bucharest, 1970.
[3] Creang I, Cazacu C, Mihu P, Opai Gh, Reischer Corina - "Introducere în teoria numerelor", Editura didactic si pedagogica, Bucharest, 1965.
[4] Rusu E, - "Aritmetica si teoria numerelor", Editura didactic si pedagogica, Editia a 2-a, Bucharest, 1963.
[Published in "Bulet. Univ. Brasov", seria C, Vol. XXIII, 1981, pp. 7-12; MR: 84j:10006.]

Flow chart:

