FLORENTIN SMARANDACHE A Generalization of Euler's Theorem

In Florentin Smarandache: "Collected Papers", vol. I (second edition). Ann Arbor (USA): InfoLearnQuest, 2007.

In the paragraphs which follow we will prove a result which replaces the theorem of Euler:

"If (a,m) = 1, then $a^{\varphi(m)} \equiv 1 \pmod{m}$ ",

for the case when a and m are not relative prime.

Introductory concepts.

One supposes that m > 0. This assumption will not affect the generalization, because Euler's indicator satisfies the equality:

 $\varphi(m) = \varphi(-m)$ (see [1]), and that the congruencies verify the following property:

 $a \equiv b \pmod{m} \Leftrightarrow a \equiv b \pmod{(-m)}$ (see [1] pp 12-13).

In the case of congruence modulo 0, there is the relation of equality. One denotes (a,b) the greater common factor of the two integers a and b, and one chooses (a,b) > 0.

B - Lemmas, theorem.

Lemma 1: Let be *a* an integer and *m* a natural number > 0. There exist d_0, m_0 from **N** such that $a = a_0 d_0$, $m = m_0 d_0$ and $(a_0, m_0) = 1$.

Proof:

It is sufficient to choose $d_0 = (a, m)$. In accordance with the definition of the greatest common factor (GCF), the quotients of a_0 and m_0 and of a and m by their TGFC are relative prime (of [3] pp 25-26).

Lemma 2: With the notations of lemma 1, if $d_0 \neq 1$ and if:

 $d_0 = d_0^1 d_1$, $m_0 = m_1 d_1$, $(d_0^1, m_1) = 1$ and $d_1 \neq 1$, then $d_0 > d_1$ and $m_0 > m_1$, and if $d_0 = d_1$, then after a limited number of steps *i* one has $d_0 > d_{i+1} = (d_i, m_i)$.

Proof:

$$(0) \begin{cases} a = a_0 d_0 & ; \quad (a_0, m_0) = 1 \\ m = m_0 d_0 & ; \quad d_0 \neq 1 \end{cases}$$
$$(1) \begin{cases} d_0 = d_0^1 d_1 & ; \quad (d_0^1, m_1) = 1 \\ m_0 = m_1 d_1 & ; \quad d_1 \neq 1 \end{cases}$$

From (0) and from (1) it results that $a = a_0 d_0 = a_0 d_0^1 d_1$ therefore $d_0 = d_0^1 d_1$ thus $d_0 > d_1$ if $d_0^1 \neq 1$.

From $m_0 = m_1 d_1$ we deduct that $m_0 > m_1$. If $d_0 = d_1$ then $m_0 = m_1 d_0 = k \cdot d_0^z$ ($z \in \mathbb{N}^*$ and $d_0 \not \mid k$). Therefore $m_1 = k \cdot d_0^{z-1}$; $d_2 = (d_1, m_1) = (d_0, k \cdot d_0^{z-1})$. After the i = z step, it results $d_{i+1} = (d_0, k) < d_0$.

Lemma 3: For each integer *a* and for each natural number m > 0 one can build the following sequence of relations:

$$(0) \begin{cases} a = a_0 d_0 \quad ; \quad (a_0, m_0) = 1 \\ m = m_0 d_0 \quad ; \quad d_0 \neq 1 \\ (1) \begin{cases} d_0 = d_0^1 d_1 \quad ; \quad (d_0^1, m_1) = 1 \\ m_0 = m_1 d_1 \quad ; \quad d_1 \neq 1 \\ \\ \vdots & \vdots & \vdots \\ (s-1) \begin{cases} d_{s-2} = d_{s-2}^1 d_{s-1} \quad ; \quad (d_{s-2}^1, m_{s-1}) = 1 \\ m_{s-2} = m_{s-1} d_{s-1} \quad ; \quad d_{s-1} \neq 1 \\ \\ m_{s-1} = m_s d_s \quad ; \quad d_s \neq 1 \end{cases}$$

Proof:

One can build this sequence by applying lemma 1. The sequence is limited, according to lemma 2, because after r_1 steps, one has $d_0 > d_{r_1}$ and $m_0 > m_{r_1}$, and after r_2 steps, one has $d_{r_1} > d_{r_1+r_2}$ and $m_{r_1} > m_{r_1+r_2}$, etc., and the m_i are natural numbers. One arrives at $d_s = 1$ because if $d_s \neq 1$ one will construct again a limited number of relations (s+1), ..., (s+r) with $d_{s+r} < d_s$.

Theorem: Let us have $a, m \in \mathbb{Z}$ and $m \neq 0$. Then $a^{\varphi(m_s)+s} \equiv a^s \pmod{m}$ where s and m_s are the same ones as in the lemmas above.

Proof:

Similar with the method followed previously, one can suppose m > 0 without reducing the generality. From the sequence of relations from lemma 3, it results that:

(0) (1) (2) (3) (s) $a = a_0 d_0 = a_0 d_0^1 d_1 = a_0 d_0^1 d_1^1 d_2 = \dots = a_0 d_0^1 d_1^1 \dots d_{s-1}^1 d_s$ and (0) (1) (2) (3) (s) $m = m_0 d_0 = m_1 d_1 d_0 = m_2 d_2 d_1 d_0 = \dots = m_s d_s d_{s-1} \dots d_1 d_0$ and

 $m_s d_s d_{s-1} \dots d_1 d_0 = d_0 d_1 \dots d_{s-1} d_s m_s$.

$$a_0^{s}(d_0^1)^{s}(d_1^1)^{s}...(d_{s-2}^1)^{s}(d_{s-1}^1)^{s}a^{\phi(m_s)} \equiv \\ \equiv a_0^{s}(d_0^1)^{s}(d_1^1)^{s}...(d_{s-2}^1)^{s}(d_{s-1}^1)^{s}(\operatorname{mod}(d_0^1)^1...(d_{s-1}^1)^{s}m_s)$$

but $a_0^s (d_0^1)^s (d_1^1)^s \dots (d_{s-1}^1)^s \cdot a^{\varphi(m_s)} = a^{\varphi(m_s)+s}$ and $a_0^s (d_0^1)^s (d_1^1)^s \dots (d_{s-1}^1)^s = a^s$ therefore $a^{\varphi(m_s)+s} \equiv a^s \pmod{m}$, for all a, m from $\mathbb{Z} (m \neq 0)$.

Observations:

If (a,m) = 1 then d = 1. Thus s = 0, and according to the theorem one has $a^{\varphi(m_0)+0} \equiv a^0 \pmod{m}$ therefore $a^{\varphi(m_0)+0} \equiv 1 \pmod{m}$. But $m = m_0 d_0 = m_0 \cdot 1 = m_0$. Thus: $a^{\varphi(m)} \equiv 1 \pmod{m}$, and one obtains Euler's theorem. Let us have a and m two integers, $m \neq 0$ and $(a,m) = d_0 \neq 1$, and $m = m_0 d_0$. If $(d_0, m_0) = 1$, then $a^{\varphi(m_0)+1} \equiv a \pmod{m}$. Which, in fact, it results from the theorem with s = 1 and $m_1 = m_0$. This relation has a similar form to Fermat's theorem: $a^{\varphi(p)+1} \equiv a \pmod{p}$.

C – AN ALGORITHM TO SOLVE CONGRUENCIES

One will construct an algorithm and will show the logic diagram allowing to calculate s and m_s of the theorem.

Given as input: two integers a and m, $m \neq 0$.

It results as output: s and m_s such that

 $a^{\varphi(m_s)+s} \equiv a^s \pmod{m}.$

Method:

(1) $A \coloneqq a$ $M \coloneqq m$ $i \simeq 0$

(2) Calculate d = (A, M) and M' = M / d.

(3) If d = 1 take S = i and $m_s = M'$ stop.

If $d \neq 1$ take $A \coloneqq d$, M = M'

 $i \coloneqq i + 1$, and go to (2).

Remark: the accuracy of the algorithm results from lemma 3 end from the theorem. See the flow chart on the following page.

In this flow chart, the SUBROUTINE LCD calculates D = (A, M) and chooses D > 0.

Application: In the resolution of the exercises one uses the theorem and the algorithm to calculate s and m_s .

Example: $6^{25604} \equiv ?(mod 105765)$

One cannot apply Fermat or Euler because $(6,105765)=3 \neq 1$. One thus applies the algorithm to calculate s and m_s and then the previous theorem:

 $d_0 = (6,105765) = 3$ $m_0 = 105765 / 3 = 35255$

 $i = 0; 3 \neq 1$ thus $i = 0 + 1 = 1, d_1 = (3, 35255) = 1, m_1 = 35255 / 1 = 35255$. Therefore $6^{\varphi(35255)+1} \equiv 6^1 \pmod{105765}$ thus $6^{25604} \equiv 6^4 \pmod{105765}$.

REFERENCES:

- [1] Popovici, Constantin P. "Teoria numerelor", Curs, Bucharest, Editura didactic si pedagogica, 1973.
- [2] Popovici, Constantin P "Logica si teoria numerelor", Editura didactica si pedagogica, Bucharest, 1970.
- [3] Creang I, Cazacu C, Mihu P, Opai Gh, Reischer Corina "Introducere în teoria numerelor", Editura didactic si pedagogica, Bucharest, 1965.
- [4] Rusu E, "Aritmetica si teoria numerelor", Editura didactic si pedagogica, Editia a 2-a, Bucharest, 1963.

[Published in "Bulet. Univ. Brasov", seria C, Vol. XXIII, 1981, pp. 7-12; MR: 84j:10006.]

Flow chart:

145