FLORENTIN SMARANDACHE

A Generalization of the

Inequality of Hölder

In Florentin Smarandache: "Collected Papers", vol. I (second edition). Ann Arbor (USA): InfoLearnQuest, 2007.

One generalizes the inequality of Hödler thanks to a reasoning by recurrence. As particular cases, one obtains a generalization of the inequality of Cauchy-BuniakovskiScwartz, and some interesting applications.

Theorem: If $a_{i}^{(k)} \in \mathrm{R}_{+}$and $\left.p_{k} \in\right] 1,+\infty[, i \in\{1,2, \ldots, n\}, k \in\{1,2, \ldots, m\}$, such that:, $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\ldots+\frac{1}{p_{m}}=1$, then:

$$
\sum_{i=1}^{n} \prod_{k=1}^{m} a_{i}^{(k)} \leq \prod_{k=1}^{m}\left(\sum_{i=1}^{n}\left(a_{i}^{(k)}\right)^{p_{k}}\right)^{\frac{1}{p_{k}}} \text { with } m \geq 2 .
$$

Proof:

For $m=2$ one obtains exactly the inequality of Hödler, which is true. One supposes that the inequality is true for the values which are strictly smaller than a certain m.
Then:,

$$
\sum_{i=1}^{n} \prod_{k=1}^{m} a_{i}^{(k)}=\sum_{i=1}^{n}\left(\left(\prod_{k=1}^{m-2} a_{i}^{k}\right) \cdot\left(a_{i}^{(m-1)} \cdot a_{i}^{(m)}\right)\right) \leq\left(\prod_{k=1}^{m-2}\left(\sum_{i=1}^{n}\left(a_{i}^{(k)}\right)^{p_{k}}\right)^{\frac{1}{p_{k}}}\right) \cdot\left(\sum_{i=1}^{n}\left(a_{i}^{(m-1)} \cdot a_{i}^{(m)}\right)^{p}\right)^{\frac{1}{p}}
$$

where $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\ldots+\frac{1}{p_{m-2}}+\frac{1}{p}=1$ and $p_{h}>1,1 \leq h \leq m-2, p>1$;
but

$$
\sum_{i=1}^{n}\left(a_{i}^{(m-1)}\right)^{p} \cdot\left(a_{i}^{(m)}\right)^{p} \leq\left(\sum_{i=1}^{n}\left(\left(a_{i}^{(m-1)}\right)^{p}\right)^{t_{1}}\right)^{\frac{1}{t_{1}}} \cdot\left(\sum_{i=1}^{n}\left(\left(a_{i}^{(m)}\right)^{p}\right)^{t_{2}}\right)^{\frac{1}{t_{2}}}
$$

where $\frac{1}{t_{1}}+\frac{1}{t_{2}}=1$ and $t_{1}>1, t_{2}>2$.
From it results that:

$$
\sum_{i=1}^{n}\left(a_{i}^{(m-1)}\right)^{p} \cdot\left(a_{i}^{(m)}\right)^{p} \leq\left(\sum_{i=1}^{n}\left(a_{i}^{(m-1)}\right)^{p t_{1}}\right)^{\frac{1}{p_{1}}} \cdot\left(\sum_{i=1}^{n}\left(a_{i}^{(m)}\right)^{p t_{2}}\right)^{\frac{1}{p_{2}}}
$$

with $\frac{1}{p t_{1}}+\frac{1}{p t_{2}}=\frac{1}{p}$.

Let us note $p t_{1}=p_{m-1}$ and $p t_{2}=p_{m}$. Then $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\ldots+\frac{1}{p_{m}}=1$ is true and one has $p_{j}>1$ for $1 \leq j \leq m$ and it results the inequality from the theorem.

Note: If one poses $p_{j}=m$ for $1 \leq j \leq m$ and if one raises to the power m this inequality, one obtains a generalization of the inequality of Cauchy-BuniakovskiScwartz:

$$
\left(\sum_{i=1}^{n} \prod_{k=1}^{m} a_{i}^{(k)}\right)^{m} \leq \prod_{k=1}^{m} \sum_{i=1}^{n}\left(a_{i}^{(k)}\right)^{m} .
$$

Application:

Let $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}$ be positive real numbers.
Show that:

$$
\left(a_{1} b_{1} c_{1}+a_{2} b_{2} c_{2}\right)^{6} \leq 8\left(a_{1}^{6}+a_{2}^{6}\right)\left(b_{1}^{6}+b_{2}^{6}\right)\left(c_{1}^{6}+c_{2}^{6}\right)
$$

Solution:

We will use the previous theorem. Let us choose $p_{1}=2, p_{2}=3, p_{3}=6$; we will obtain the following:

$$
a_{1} b_{1} c_{1}+a_{2} b_{2} c_{2} \leq\left(a_{1}^{2}+a_{2}^{2}\right)^{\frac{1}{2}}\left(b_{1}^{3}+b_{2}^{3}\right)^{\frac{1}{3}}\left(c_{1}^{6}+c_{2}^{6}\right)^{\frac{1}{6}}
$$

or more:
$\left(a_{1} b_{1} c_{1}+a_{2} b_{2} c_{2}\right)^{6} \leq\left(a_{1}^{2}+a_{2}^{2}\right)^{3}\left(b_{1}^{3}+b_{2}^{3}\right)^{2}\left(c_{1}^{6}+c_{2}^{6}\right)$,
and knowing that

$$
\left(b_{1}^{3}+b_{2}^{3}\right)^{2} \leq 2\left(b_{1}^{6}+b_{2}^{6}\right)
$$

and that

$$
\left(a_{1}^{2}+a_{2}^{2}\right)^{3}=a_{1}^{6}+a_{2}^{6}+3\left(a_{1}^{4} a_{2}^{2}+a_{1}^{2} a_{2}^{4}\right) \leq 4\left(a_{1}^{6}+a_{2}^{6}\right)
$$

since

$$
\left.a_{1}^{4} a_{2}^{2}+a_{1}^{2} a_{2}^{4} \leq a_{1}^{6}+a_{2}^{6} \text { (because: }-\left(a_{2}^{2}-a_{1}^{2}\right)^{2}\left(a_{1}^{2}+a_{2}^{2}\right) \leq 0\right)
$$

it results the exercise which was proposed.

