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One generalizes the inequality of Hödler thanks to a reasoning by recurrence. As 
particular cases, one obtains a generalization of the inequality of Cauchy-Buniakovski-
Scwartz, and some interesting applications. 

Theorem: If ai
(k ) ∈R+  and pk ∈]1,+∞[ , i ∈{1,2,...,n} , k ∈{1,2,..., m} , such that:, 

1 2

1 1 1... 1
mp p p

+ + + = , then: 

ai
(k )

k =1

m

∏
i=1

n

∑ ≤
k =1

m

∏ ai
(k )( )pk

i=1

n

∑⎛
⎝⎜

⎞
⎠⎟

1

pk

 with m ≥ 2 . 

Proof: 
For m = 2 one obtains exactly the inequality of Hödler, which is true. One 

supposes that the inequality is true for the values which are strictly smaller than a 
certain m .  
Then:, 
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From it results that: 
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Let us note pt1 = pm−1  and pt2 = pm . Then  
1 2
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+ + + =  is true and one has 

pj > 1  for 1 ≤ j ≤ m  and it results the inequality from the theorem. 

Note: If one poses pj = m  for 1 ≤ j ≤ m  and if one raises to the power m  this 
inequality, one obtains a generalization of the inequality of Cauchy-Buniakovski-
Scwartz: 
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Application:  
Let a1,a2 ,b1,b2 ,c1,c2 be positive real numbers. 

Show that: 
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Solution: 
We will use the previous theorem. Let us choose p1 = 2 ,  p2 = 3 ,  p3 = 6 ; we will obtain 
the following: 
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or more: 
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it results the exercise which was proposed. 
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