RECREAȚII MATEMATICE

REVISTĂ DE MATEMATICĂ PENTRU ELEVI ŞI PROFESORI

$e^{i \pi}=-1$

Asociația "Recreații Matematice" IAŞI - 2011

CORESPONDENTE

A Group-Permutation Algorithm to Solve the Generalized SUDOKU ${ }^{1}$
 Florentin SMARANDACHE ${ }^{2}$

Abstract

Sudoku can be generalized to squares whose dimensions are $n^{2} \times n^{2}$, where $n \geq 2$, using various symbols (numbers, letters, mathematical symbols, etc.), written just one time on each row and on each column; and the large square is divided into n^{2} small squares with the side $n \times n$ and each will contain all n^{2} symbols written only once. In this paper we present an elementary solution for the generalized sudoku based on a group-permutation algorithm.

Keywords: permoutation, group, sudoku.

MSC 2000: 00A08, 97A20.
Sudoku is a game with numbers, formed by a square with the side of 9 , and on each row and column are placed the digits $1,2,3,4,5,6,7,8,9$, written only one time; the square is subdivided in 9 smaller squares with the side of 3×3, which, also, must satisfy the same condition, i.e. each square to contain all digits from 1 to 9 written only once.

The Japanese company Nikoli has popularized this game in 1986 under the name of sudoku, meaning "single number".

Sudoku can be generalized to squares whose dimensions are $n^{2} \times n^{2}$, where $n \geq 2$, using various symbols (numbers, letters, mathematical symbols, etc.), written just one time on each row and on each column; and the large square is divided into n^{2} small squares with the side $n \times n$ and each will contain all n^{2} symbols written only once.

An elementary solution of one of these generalized Sudokus, with elements (symbols) from the set

$$
S=\left\{s_{1}, s_{2}, \ldots, s_{n}, s_{n+1}, \ldots, s_{2 n}, \ldots, s_{n^{2}}\right\}
$$

(supposing that their placement represents the relation of total order on the set of elements S), is:

Row 1: all elements in ascending order

$$
s_{1}, s_{2}, \ldots, s_{n}, s_{n+1}, \ldots, s_{2 n}, \ldots, s_{n^{2}}
$$

On the next rows we will use circular permutations, considering groups of n elements from the first row as follows:

Row 2:

$$
s_{n+1}, s_{n+2}, \ldots, s_{2 n} ; s_{2 n+1}, \ldots, s_{3 n} ; \ldots, s_{n^{2}} ; s_{1}, s_{2}, \ldots, s_{n}
$$

[^0]Row 3:

$$
s_{2 n+1}, \ldots, s_{3 n} ; \ldots, s_{n^{2}} ; s_{1}, s_{2}, \ldots, s_{n} ; s_{n+1}, s_{n+2}, \ldots, s_{2 n}
$$

Row n :

$$
s_{n^{2}-n+1}, \ldots, s_{n^{2}} ; s_{1}, \ldots, s_{n} ; s_{n+1}, s_{n+2}, \ldots, s_{2 n} ; \ldots, s_{3 n} ; \ldots, s_{n^{2}-n}
$$

Now we start permutations of the elements of row $\mathrm{n}+1$ considering again groups of n elements.

Row $n+1$:

$$
s_{2}, \ldots, s_{n}, s_{n+1} ; s_{n+2}, \ldots, s_{2 n}, s_{2 n+1} ; \ldots ; s_{n^{2}-n+2}, \ldots, s_{n^{2}}, s_{1}
$$

Row $n+2$:

$$
s_{n+2}, \ldots, s_{2 n}, s_{2 n+1} ; \ldots ; s_{n^{2}-n+2}, \ldots, s_{n^{2}}, s_{1} ; s_{2}, \ldots, s_{n}, s_{n+1}
$$

Row 2n:

$$
s_{n^{2}-n+2}, \ldots, s_{n^{2}}, s_{1} ; s_{2}, \ldots, s_{n}, s_{n+1} ; s_{n+2}, \ldots, s_{2 n}, s_{2 n+1} ; \ldots
$$

Row $2 n+1$:

$$
s_{3}, \ldots, s_{n+2} ; s_{n+3}, \ldots, s_{2 n+2} ; \ldots ; s_{n^{2}+3}, \ldots, s_{n^{2}}, s_{1}, s_{2}
$$

and so on.
Replacing the set S by any permutation of its symbols, which we'll note by S^{\prime}, and applying the same procedure as above, we will obtain a new solution.

The classical Sudoku is obtained for $n=3$.
Below is an example of this group-permutation algorithm for the classical case:

1	2	3	4	5	6	7	8	9
4	5	6	7	8	9	1	2	3
7	8	9	1	2	3	4	5	6
2	3	4	5	6	7	8	9	1
5	6	7	8	9	1	2	3	4
8	9	1	2	3	4	5	6	7
3	4	5	6	7	8	9	1	2
6	7	8	9	1	2	3	4	5
9	1	2	3	4	5	6	7	8

For a $4^{2} \times 4^{2}$ square we use the following 16 symbols:

$$
\{A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P\}
$$

and use the same group-permutation algorithm to solve this Sudoku.

From one solution to the generalized Sudoku we can get more solutions by simply doing permutations of columns or/and of rows of the first solution.

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P
E	F	G	H	I	J	K	L	M	N	O	P	A	B	C	D
I	J	K	L	M	N	O	P	A	B	C	D	E	F	G	H
M	N	O	P	A	B	C	D	E	F	G	H	I	J	K	L
B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	A
F	G	H	I	J	K	L	M	N	O	P	A	B	C	D	E
J	K	L	M	N	O	P	A	B	C	D	E	F	G	H	I
N	O	P	A	B	C	D	E	F	G	H	I	J	K	L	M
C	D	E	F	G	H	I	J	K	L	M	N	O	P	A	B
G	H	I	J	K	L	M	N	O	P	A	B	C	D	E	F
K	L	M	N	O	P	A	B	C	D	E	F	G	H	I	J
O	P	A	B	C	D	E	F	G	H	I	J	K	L	M	N
D	E	F	G	H	I	J	K	L	M	N	O	P	A	B	C
H	I	J	K	L	M	N	O	P	A	B	C	D	E	F	G
L	M	N	O	P	A	B	C	D	E	F	G	H	I	J	K
P	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O

Bibliografie

1. Z. Pitkow - Sudoku: Medium to Hard, Chronicle Books, 2006.
2. F. Longo - Absolutely Nasty Sudoku Level 4 (Mensa), Puzzlewright, 2007.
3. P. Gordon, F. Longo - Mensa Guide to Solving Sudoku: Hundreds of Puzzles Plus Technique to Help You Crack Them All, Sterling, 2006.

[^0]: ${ }^{1}$ Articolul a fost publicat de autor în cartea sa Frate cu meridianele şi paralelele, vol. IV, pp. 201-202, Offsetcolor, Rm. Vâlcea, 2008. Autorul are acordul editurii de republicare a articolului în revista Recreaţii Matematice.
 ${ }^{2}$ University of New Mexico, Gallup Campus, USA

