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Abstract. Algebraic codes play a signi�cant role in the minimisation of data
corruption which caused by de¤ects such as inference, noise channel, crosstalk,
and packet loss.In this paper, we introduce soft codes (soft linear codes)
through the application of soft sets which is an approximated collection of
codes. We also discuss several types of soft codes such as type-1 soft codes,
complete soft codes etc. Further, we constrcut the soft generator matrix and
soft parity check matrix for the soft linear codes. Moreover, we develop two
techinques for the decoding of soft codes.

1. Intorduction

The transmission and storage of larage amounts of data reliably and without
error is a signi�cant part of the modern communication systems. Algebriac codes
are used for data compression, cryptography, error correction and for network cod-
ing. The theory of codes was �rst focused by Shanon in 1948 and then gradually
developed by time to time by di¤erent reserchers. There are many types of codes
which is important to its algebriac structures such as Linear block codes, Hamming
codes, BCH codes [40] and so on. The most common type of code is a linear code
over the �eld Fq. Recently a variety of codes over �nite rings have been studied.
The linear codes over �nite rings are initiated by Blake in a series of papers [10; 11],
Spiegel [43; 44] : Huber de�ned codes over Gaussian integers [21; 22; 23]. Shankar
[40] studied BCH codes over rings of residue integers. Satyanarayana [38] consider
analyses of codes over Zn by viewing their properties under the Lee metric. Some
more literature can be studied in [8; 14; 15; 16; 17; 19; 25; 26; 30; 32] :
Zadeh in his seminal paper [47] introduced the innovative concept of fuzzy sets

in 1965. A fuzzy set is characterized by a membership function whose values are
de�ned in the unit interval [0; 1] and thus fuzzy set perhaps is the most suitable
framewrok to model uncertain data. Fuzzy sets have a several interesting appli-
cations in the areas such as signal processing, decision making, control theory,
reasoning, pattern recognition, computer version and so on. The theory of fuzzy
set is a signi�cantly used in medical diagnosis, social science, engineering etc. The
algebraic strucutres in the context of fuzzy sets have been studied such as fuzzy
groups, fuzzy rings, fuzzy semigroups fuzzy codes etc. Some more study on fuzzy
set can be found in [46; 48].
The theory of rough sets [33; 34] was �rst introduced by Pawlak in 1982 which is

another signi�cant mathematical tool to hanlde vague data and information. The
theory of rough sets mainly based upon equivalence classes to approximate crisp
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sets. Rough sets has several applications in data mining, machine learning, medi-
cine, data analysis, expert systems and cognitive analysis etc. Some more literature
can be found on rough sets in [18; 24; 35; 36; 37; 41; 45]. Algebraic structures can also
be studied in the context of rough set such rogh groups [9], rough semigroups and
so on.
The complexities of modelling uncertain data is the main problem in engineer-

ing, environmental science, economics, social sciences, health and medical sciences
etc. Classical theories are not always successful as the uncertainties are of several
types which appearing in these domains. The fuzzy set theory [31], probability
theory, rough set theory [33; 34] etc are well known and useful mathematical tools
which describe uncertainty but each of them has its own limitation pointed out by
Molodstov. Therefore, Molodstov intorduced the theory of soft sets [31] to model
vague and uncertain information. A soft set a parameterized collection of subsets
of a universe of discourse. This mathematical tool is free from parameterization in-
adequacy, syndrome of fuzzy set theory, rough set theory, probability theory and so
on. Soft set theory has been applied successfully in several areas such as, smooth-
ness of functions, game theory, operation reaserch, Riemann integration, Perron
integration, and probability. Maji et. al [27; 28; 29] gave the application of soft sets
in decision making problem. Recently soft set theory attained much attention of
the researchers since its appearance and start studying soft algebraic strucutres.
Aktas and Cagman [1] introduced soft groups which laid down the foundations to
study algebraic structures in the contex of soft sets. Some properties and algebra
may be found in [2] : Feng et al. studied soft semigroups in [20]. A huge amount of
literature can be seen in [3; 4; 5; 6; 7; 39; 42] :
The main purpose of this paper is to introduce alegebraic soft coding theory

which extend the notion of a code to soft sets. A soft code is a parameterized
collection of codes. Di¤erent types of error correcting codes have been extend to
constructuct soft error correcting codes. A variety of soft codes can be found by
applying soft sets to codes. Soft linear codes have been discussed mainly in this
paper. The novel concept of soft dimension have been introduced which infact a
generalization of the dimension of a code and the concept of soft minimum distance
is introduced here. Soft codes of type 1 has been established in this paper. The
important notions of soft generator matrix as well as soft parity check matrix have
been constructed to study more features of soft linear codes. Further, the notions
of soft complete codes are introduced in this paper and in the end two soft decoding
algorithm has been costructed in this paper.
The organization of this paper is as follows: In section 2, basic concpets of soft

sets and cods are presented. In section 3, the important notions of soft codes are
given with the study of some of their basic properties and features. In section 4, soft
generator matrix and soft parity check matrix are presented. Section 5 is about the
soft decoding of soft codes. In this, two examples are presented for the veri�cation
of soft decoding process. Conclusion is given in section 6.

2. Basic concepts

2.1. Codes.

De�nition 1. [25]. Let A be a �nite set of q symbols where (q > 1) and let V = An

be the set of n-tuples of elements of A where n is some positive integer greater than
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1:In fact V is a vecotr space over A. Now let C be a non empty subset of V . Then
C is called a q-ary code of lenght n over A:

De�nition 2. [25]. Let Fn be a vector space over the �eld F , and x; y 2 Fn where
x = x1x2:::xn,y = y1y2:::yn. The Hamming distance between the vectors x and y is
denoted by d (x; y), and is de�ned as d (x; y) = ji : xi 6= yij.

De�nition 3. [25]. The minimum distance of a code C is the smallest distance
between any two distinct codewords in C which is denoted by d (C) ; that is d (C) =
min fd (x; y) : x; y 2 C, x 6= yg :

De�nition 4. [25]. Let F be a �nite �eld and n be a positive integer. Let C be a
subspace of the vector space V = Fn. Then C is called a linear code over F .

De�nition 5. [25]. The linear code C is called linear [n; k]-code if dim(C) = k.

De�nition 6. [25]. Let C be a linear [n; k]-code. Let G be a k � n matrix whose
rows form basis of C: Then G is called generator matrix of the code C.

De�nition 7. [25]. Let C be an [n; k]-code over F . Then the dual code of C is
de�ned to be

C? = fy 2 Fn : x � y = 0 for all x 2 Cg

De�nition 8. [25]. Let C be an [n; k]-code and let H be the generator matrix of
the dual code C?. Then H is called a parity-check matrix of the code C:

De�nition 9. [25]. A code C is called self-orthogonal code if C � C?.

De�nition 10. [25]. Let C be a code over the �eld F and for every x 2 Fn; the
coset of C is de�ned to be

Cc = fx+ c : c 2 Cg

De�nition 11. [25]. Let C be a linear code over F: The coset leader of a given
coset C is de�ned to be the vector with least weight in that coset.

De�nition 12. [25]. If a codeword x is transmitted and the vector y is received,
then e = y � x is called error vector. Therefore a coset leader is the error vector
for each vector y lying in that coset.

2.2. Soft set. Throughout this subsection U refers to an initial universe, E is a
set of parameters, P (U) is the power set of U , and A � E. Molodtsov [31]. de�ned
the soft set in the following manner:

De�nition 13. [31]. A pair (F;A) is called a soft set over U where F is a mapping
given by F : A �! P (U).

In other words, a soft set over U is a parameterized family of subsets of the
universe U . For a 2 A, F (a) may be considered as the set of a-elements of the soft
set (F;A), or as the set of a-approximate elements of the soft set.

De�nition 14. [28]. For two soft sets (F;A) and (H;B) over U , (F;A) is called
a soft subset of (H;B) if

(1) A � B and
(2) F (e) � G(e), for all e 2 A.
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This relationship is denoted by (F;A)
�
� (H;B). Similarly (F;A) is called a

soft superset of (H;B) if (H;B) is a soft subset of (F;A) which is denoted by

(F;A)
�
� (H;B).

De�nition 15. [28]. Two soft sets (F;A) and (H;B) over U are called soft equal
if (F;A) is a soft subset of (H;B) and (H;B) is a soft subset of (F;A).

3. Soft code

De�nition 16. Let K be a �nite �eld and V = Kn be a vector space over K where
n is a positive integer. Let P (V ) be the power set of V and (F;A) be a soft set over
V: Then (F;A) is called soft linear code over V if and only if F (a) is subspace of
V which is a linear code.

Example 1. Let K = K2 and V = K3
2 is a vector space over K2 and let (F;A)

be a soft set over V = K3
2 . Then clearly (F;A) is a soft linear code over V = K

3
2 ,

where

F (a1) = f000; 111g ;
F (a2) = f000; 110; 101; 011; 111g :

De�nition 17. Let (F;A) be a soft code over the �eld K: Then the codeword of
(F;A) is called soft codeword, which is denoted by Ys.

De�nition 18. Let (F;A) be a soft code over V = Kn. Then Ds is called soft
dimension of (F;A) if

Ds = (dim (F (a)) forall a 2 A)

The soft dimension Ds of the soft code is simply an m-tuple; where m is the
number of parameters in the parameter set A:

Example 2. Let (F;A) be a soft code de�ned in above example. Then the soft
dimension is as follows,

Ds = (dim (F (a1)) = 1;dim (F (a2)) = 2)

= (1; 2)

De�nition 19. A soft linear code (F;A) over V of soft dimension Ds is called soft
linear [n;Ds]-code.

De�nition 20. Let (F;A) be a soft code over V . Then the soft minimum distance
of (F;A) is denoted by Sd (F;A) and is de�ned to be

Sd (F;A) =

�
d (F (a)) : d (F (a)) is the minimum distance of the code F (a) ,

for all a 2 A:

�
Example 3. Let K = K2 be a �eld and V = K3

2 is a vector space over K2 and let
(F;A) be a soft set over V = K3

2 . Then clearly (F;A) is a soft code over V = K
3
2 ,

where

F (a1) = f000; 111g ;
F (a2) = f000; 110; 101; 011g :
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the minimum distance of the code F (a1) = 3 and F (a2) = 2. Thus the soft
minimm distance of the soft code (F;A) is given as

Sd (F;A) = (d (F (a1)) = 3; d (F (a2)) = 2)

= (3; 2)

De�nition 21. A soft code (F;A) in V over the �eld K is called soft code of type
1, if the dimension of F (a) is same, for all a 2 A.
Example 4. Let (F;A) be a soft code in V over the �eld K2

2 , where

F (a1) = f00; 01g ; F (a2) = f00; 10g
The sofd dimension Ds of (F;A) is as follows,

Ds = (1; 1)

Theorem 1. Every soft code of type 1 is trivially a soft code but the converse is
not true.

For converse, we take the following example.

Example 5. Let K = K2 and V = K3
2 is a vector space over K2 and let (F;A) be

a soft set over V = K3
2 . Then (F;A) is a soft linear code over V = K

3
2 , where

F (a1) = f000; 111g ;
F (a2) = f000; 110; 101; 011; 111g :

Then clearly (F;A) is not soft code of type1.

4. Soft Generator Matrix and Soft Parity Check Matrix

De�nition 22. Let (F;A) be a soft linear [n;Ds]-code. Let Gs be the super matrix
whose elements are the generator matrices of the soft code (F;A), corresponding to
each a 2 A.
Then Gs is termed as the soft generator matrix of the soft linear code (F;A).

Example 6. Let K = K2 be a �eld and V = K3
2 is a vector space over K2 and let

(F;A) be a soft set over V = K3
2 . Then clearly (F;A) is a soft code over V = K

3
2 ,

where

F (a1) = f000; 111g ;
F (a2) = f000; 110; 101; 011g :

F (a1) has generator matrix GF (a1) =
�
1 1 1

�
and F (a2) has generator

matrix GF (a2) =
�
1 1 0
0 1 1

�
.

Then the soft generator matix of the soft code (F;A) is as follows.

Gs =

��
1 1 1

� ����� 1 1 0
0 1 1

��
Remark 1. The soft generator matrix Gs of a soft linear code (F;A) is not unique.

De�nition 23. Let (F;A) be a soft [n;Ds]-code over the �eld K and the vector
space V: Then the soft dual code of (F;A) is de�ned to be

(F;A)
?
=
n
F (a)

?
: F (a)

? is the dual code of F (a) , for all a 2 A
o
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Example 7. Let K = K2 be a �eld and V = K3
2 is a vector space over K2 and let

(F;A) be a soft set over V = K3
2 . Then clearly (F;A) is a soft code over V = K

3
2 ,

where

F (a1) = f000; 111g ;
F (a2) = f000; 110; 101; 011g :

Then the soft dual code of (F;A) is (F;A)?, where

F (a1)
?

= f000; 110; 101; 011g ;
F (a2)

?
= f000; 111g :

De�nition 24. A soft linear code (F;A) in V = Kn over the �eld K is called
complete-soft code or simply if for all a 2 A, the dual of F (a) also exist in (F;A).

Example 8. Let K = K2 be a �eld and V = K3
2 is a vector space over K2 and let

(F;A) be a soft set over V = K3
2 . Then clearly (F;A) is a soft code over V = K

3
2 ,

where

F (a1) = f000; 111g ;
F (a2) = f000; 110; 101; 011g :

Then clearly (F;A) is a complete-soft code because the dual of F (a1) is F (a2)
which is present in (F;A) and also the dual of F (a2) is F (a1).

Theorem 2. All complete-soft codes are trivially soft codes but the converse is not
true in general.

Theorem 3. A complete-soft code (F;A) over the �eld K and the vector space V
is the parametrized collection of the codes C with its dual code C?:

De�nition 25. Let (F;A) be a soft code over the �eld K and the vector space V
and (F;A)? be the soft dual code of (F;A) :Then the soft dimension of the soft dual
code (F;A)? is denoted by (Ds)

? and is de�ned as

(Ds)
?
=

 
dim

�
F (a)

?
�
: dim

�
F (a)

?
�
is the dimnesion of the dual code F (a) ,

for all a 2 A:

!

Example 9. In previuos example the soft dimension of the dual code (F;A)? is
following

(Ds)
?

=
�
dim

�
F (a1)

?
�
= 2;dim

�
F (a1)

?
�
= 1
�

= (2; 1)

De�nition 26. Let (F;A) be a soft over the �eld K and the vector space V and
let Hs be the soft generator matix of the soft dual code (F;A)

?
: Then Hs is called

the soft parity check matrix of the soft code (F;A) :

Example 10. In above example the soft dual code of (F;A) is (F;A)?, where

F (a1)
?

= f000; 110; 101; 011g ;
F (a2)

?
= f000; 111g :
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The soft generator matrix of (F;A)? is S (H), where

Hs =

��
1 1 0
0 1 1

� ��� 1 1 1
��

Where HF (a1) =
�
1 1 0
0 1 1

�
is a parity check matrix of GF (a1) and HF (a2) =�

1 1 1
�
is a parity check matrix of GF (a2).

Remark 2. A soft parity check matrix of soft linear code (F;A) is not unique.

Theorem 4. Let (F;A) be a soft code over the �eld K and the vector space V . Let
Gs and Hs be the soft generator matrix and soft parity check matix of the soft code
(F;A) : Then

GsH
T
s = 0

De�nition 27. A soft linear code (F;A) in V over the �eld K is called soft self
dual code if (F;A)? = (F;A) :

De�nition 28. Let (F;A) be a soft code over the �eld K and the vector space V .
Let Gs be the soft generator matrix of (F;A) : Then the soft canonical generator
matrix of (F;A) is denoted by G�s and is de�ned as

G�S =
h
G�F (a)

i
where G�F (a) is the canonical generator matrix of F (a), for all a 2 A:

Example 11. Let (F;A) be a soft code over V = K5
2 , where

F (a1) =

�
00000; 10010; 01001; 00110; 11011;

10100; 01111; 11101

�
;

F (a2) = f00000; 11111; 10110; 01001g :

The soft canonical generator matrix of (F;A) is as under,

G�s =

24� 1 0 1 1 0
0 1 0 0 1

� ������
24 1 0 0 1 0
0 1 0 0 1
0 0 1 1 0

3535
where G�F (a1) =

�
1 0 1 1 0
0 1 0 0 1

�
; G�F (a2) =

24 1 0 0 1 0
0 1 0 0 1
0 0 1 1 0

35 are respec-
tively the canonical generator matrices of F (a1) and F (a2) :

Theorem 5. Let (F;A) be a soft code. If (F;A) has a soft canonical generator
matrix

G�s =
h
G�F (a) =

h
Ik
... A

i
, for all a 2 A

i
Then

H�
s =

�
H�
F (a) =

�
�AT

... In�k

�
, for all a 2 A

�
is the soft canonical parity check matrix of (F;A). Conversely, if

H�
s =

h
H�
F (a) =

h
B
... In�k

i
, for all a 2 A

i
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is the soft canonical parity check matrix of (F;A), then

G�s =
h
G�F (a) =

h
Ik
... �BT

i
, for all a 2 A

i
:

5. Soft Decoding Algorithems

5.1. Soft Standard Array Decoding.

De�nition 29. Let (F;A) be a soft linear code or soft subspace of V = Kn over
the �eld K and for every x 2 Kn,

(F;A)C = fx+ F (a) , for all a 2 Ag

is called the soft coset of (F;A) and is denoted by (F;A)C .

Example 12. Let Let K = K2 be a �eld and V = K3
2 is a vector space over K2

and let (F;A) be a soft set over V = K3
2 . Then clearly (F;A) is a soft code over

V = K3
2 , where

F (a1) = f000; 111g ;
F (a2) = f000; 110; 101; 011g :

Then the soft cosets of the soft code (F;A) are as follows.
(F;A)C1 = f000 + F (a1) ; 000 + F (a2)g = (F;A) ;
(F;A)C2 = f100 + F (a1) ; 100 + F (a2)g = ff100; 011g ; f100; 010; 001; 111gg ;
(F;A)C3 = f010 + F (a1) ; 010 + F (a2)g = ff010; 101g ; f100; 010; 001; 111gg ;
(F;A)C4 = f001 + F (a1) ; 001 + F (a2)g = ff001; 110g ; f100; 010; 001; 111gg :

De�nition 30. Let (F;A) be a soft linear code in V = Kn over the �eld K: The
soft coset leader of a given soft coset (F;A)C is denoted by Ei and is de�ned to be

Ei = fu : u is the coset leader of F (a) , for all a 2 Ag

Example 13. In above example,the following are the soft coset leaders of the soft
coset (F;A),

E1 = f000; 000g ;

E
2
= f100; 100g ;

E
3
= f010; 010g ;

E
4
= f001; 001g :

and so on.

De�nition 31. A set of standard arrays of the corresponding parametrized codes
is called soft standard array for the soft linear code (F;A).

Example 14. Let K = K2 be a �eld and V = K3
2 is a vector space over K2 and let

(F;A) be a soft set over V = K3
2 . Then clearly (F;A) is a soft code over V = K

3
2 ,

where

F (a1) = f000; 111g ;
F (a2) = f000; 110; 101; 011g :
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Then the soft cosets of (F;A) are as follows.
(F;A)C1 = f000 + F (a1) ; 000 + F (a2)g = (F;A) ;
(F;A)C2 = f100 + F (a1) ; 100 + F (a2)g = ff100; 011g ; f100; 010; 001; 111gg ;
(F;A)C3 = f010 + F (a1) ; 010 + F (a2)g = ff010; 101g ; f100; 010; 001; 111gg ;
(F;A)C4 = f001 + F (a1) ; 001 + F (a2)g = ff001; 110g ; f100; 010; 001; 111gg :
The following are the coset leaders of the soft linear code (F;A),

E1 = f000; 000g ;

E2 = f100; 100g ;

E
3
= f010; 010g ;

E
4
= f001; 001g :

The soft standard array for the soft linear code (F;A) is following,8>><>>:
000 111
100 011
010 101
001 110

;

000 110 101 011
100 010 001 111
010 100 111 001
001 111 100 010

9>>=>>;
By soft standard array,we can decode a set of codewords at a time, because we

decode codeword corresponding to each parameter.
Let we want to decode a soft codeword Ys = f110; 111g in the soft standard array.

We �nd the positions of the codewords in the parameterized standard arrays. Since
110 occures in the second column of the �rst parametrized array and the top entry
in that column is 111, so 110 is decoded as 111: Now look at the position of 111 in
the second parameterized array. Since 111 is occure in all the three columns,so 111
can be decoded as all the non-trivial codewords. By taking any one codewrods,we
get the dcoded codewords. Let we take 111 occures in the �rst column and the top
entry in that column is 110. Hence the set of codewords f110; 111g is decoded as
f111; 110g.

5.2. Soft Syndrome Decoding.

De�nition 32. Let (F;A) be a soft code over K with soft parity check matrix HS.
For any vector Ys � Kn. The soft syndrome of Ys is de�ned as S (Ys) = Ys (Hs)

T .

Theorem 6. Let (F;A) be a soft code over the �eld K: For Ys � Kn, the soft
codeword nearest to Ys is given by Xs = Ys �Es, where Es is the soft coset leader.

Let (F;A) be a soft code over the �eldK with soft parity check matrix S (H) : For
soft syndrome, we �rst �nd all the soft coset of the soft code (F;A) and then �nd the
soft coset leaders ES which are infact the collection of coset leaders corresponding
to each parameterized code. Now we compute the soft syndrome for all the soft
coset leaders and then make a table of soft coset leaders with their soft syndroms.
To decode a soft codeword say YS , we simply �nd the soft syndrome of that soft
codeword and then compare their soft syndrome with soft coset leader syndrome.
After comparing their soft syndromes, we then subtract the soft coset leader from
the soft decoded word. Hence YS is soft decoded as XS = YS � Es.
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Example 15. Let (F;A) be a soft code in V = K3
2 over the �eld K = Z2, where

F (a1) = f000; 111g ;
F (a2) = f000; 110; 101; 011g :

The soft parity check matrix of (F;A) is Hs, where

Hs =

��
1 1 0
0 1 1

� ��� 1 1 1
��

The transpose of Hs is following,

(Hs)
T
=

2424 1 0
1 1
0 1

35 ������
24 1
1
1

3535
Then the soft cosets of (F;A) are as follows.
(F;A)C1 = f000 + F (a1) ; 000 + F (a2)g = (F;A) ;
(F;A)C2 = f100 + F (a1) ; 100 + F (a2)g = ff100; 011g ; f100; 010; 001; 111gg ;
(F;A)C3 = f010 + F (a1) ; 010 + F (a2)g = ff010; 101g ; f100; 010; 001; 111gg ;
(F;A)C4 = f001 + F (a1) ; 001 + F (a2)g = ff001; 110g ; f100; 010; 001; 111gg :
The following are the soft coset leaders Ei of the soft code (F;A),

E1 = f000; 000g ;

E
2
= f100; 100g ;

E3 = f010; 010g ;

E
4
= f001; 001g :

Soft syndrome table of soft coset leader is given as follows.

soft coset leader soft syndrome
f000; 000g f00; 0g
f100; 100g f10; 1g
f010; 010g f11; 1g
f001; 001g f01; 1g

We want to decod a soft codeword Ys = f110; 101g. First we �nd the soft
syndrom of the soft codeword.

S (Ys) = y (Hs)
T
= [110; 100]

2424 1 0
1 1
0 1

35 ������
24 1
1
1

3535 = [01; 1]
Since S (f110; 100g) = f01; 1g = S (f001; 001g) :
The decoded soft codeword is

S (Ys)� S (E4) = Xs

S (f110; 100g)� S (f001; 001g) = f110� 001; 100� 001g
= f111; 101g :

Hence the soft codesword Ys = f110; 100g is decoded as Xs = f111; 101g : By
similar passion we can �nd all the soft decoded codewords.
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6. Conclusion

In this paper, we introduced the iportant notions of soft codes (soft linear codes)
in the context of soft set. Soft codes are basically an approximated family of codes
over a vector space. Soft codes posses a varaity of several new types of codes. We
also presented soft generator matix and soft parity check matrix of soft code. In
fact super matrix is the soft generator matrix and soft parity check matrix of the
soft codes. Furthermore, the techniques of soft decoding of soft codes are given in
this paper. A lot of research can be conducted in this area of soft code. In the
future, we"ll construct soft polynomial codes.
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