FLORENTIN SMARANDACHE
A Property For A Counterexample
To Carmichaël's Conjecture

In Florentin Smarandache: "Collected Papers", vol. I (second edition). Ann Arbor (USA): InfoLearnQuest, 2007.

A PROPERTY FOR A COUNTEREXAMPLE TO CARMICHAËL'S CONJECTURE

Carmichaël has conjectured that:
$(\forall) n \in \mathbb{N}$, (\exists) $m \in \mathbb{N}$, with $m \neq n$, for which $\varphi(n)=\varphi(m)$, where φ is Euler's totient function.

There are many papers on this subject, but the author cites the papers which have influenced him, especially Klee's papers.

Let n be a counterexample to Carmichaël's conjecture.
Grosswald has proved that n is a multiple of 32 , Donnelly has pushed the result to a multiple of 2^{14}, and Klee to a multiple of $2^{42} \cdot 3^{47}$, Smarandache has shown that n is a multiple of $2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 43^{2}$. Masai \& Valette have bounded $n>10^{10000}$.

In this note we will extend these results to: n is a multiple of a product of a very large number of primes.

We construct a recurrent set M such that:
a) the elements $2,3 \in M$;
b) if the distinct elements $2,3, q_{1}, \ldots, q_{r} \in M$ and $p=1+2^{a} \cdot 3^{b} \cdot q_{1} \cdots q_{r}$ is a prime, where $a \in\{0,1,2, \ldots, 41\}$ and $b \in\{0,1,2, \ldots, 46\}$, then $p \in M ; r \geq 0$;
c) any element belonging to M is obtained only by the utilization (a finite number of times) of the rules a) or b).

Of course, all elements from M are primes.
Let n be a multiple of $2^{42} \cdot 3^{47}$;
if $5 \ell n$ then there exists $m=5 n / 4 \neq n$ such that $\varphi(n)=\varphi(m)$; hence
5 I n; whence $5 \in M$;
if $5^{2} \nless n$ then there exists $m=4 n / 5 \neq n$ with our property; hence $5^{2} \mid n$;
analogously, if $7 \| n$ we can take $m=7 n / 6 \neq n$, hence $7 \mid n$; if $7^{2} \ell n$ we can
take $m=6 n / 7 \neq n$; whence $7 \in M$ and $7^{2} \mid n$; etc.
The method continues until it isn't possible to add any other prime to M, by its construction.

For example, from the 168 primes smaller than 1000 , only 17 of them do not belong to M (namely: 101, 151, 197, 251, 401, 491, 503, 601, 607, 677, 701, 727, 751, $809,883,907,983)$; all other 151 primes belong to M.

Note $M=\left\{2,3, p_{1}, p_{2}, \ldots, p_{s}, \ldots\right\}$, then n is a multiple of $2^{42} \cdot 3^{47} \cdot p_{1}^{2} \cdot p_{2}^{2} \cdots p_{s}^{2} \cdots$
From our example, it results that M contains at least 151 elements, hence $s \geq 149$.
If M is infinite then there is no counterexample n, whence Carmichaël's conjecture is solved.
(The author conjectures M is infinite.)
Using a computer it is possible to find a very large number of primes, which divide n, using the construction method of M, and trying to find a new prime p if $p-1$ is a product of primes only from M.

REFERENCES

[1] R. D. Carmichaël - Note on Euler's ϕ function - Bull. Amer. Math. Soc. 28(1922), pp. 109-110.
[2] H. Donnelly - On a problem concerning Euler's phi-function - Amer. Math. Monthly, 80(1973), pp. 1029-1031.
[3] E. Grosswald - Contribution to the theory of Euler's function $\phi(x)$ - Bull. Amer. Math. Soc., 79(1973), pp. 337-341.
[4] R. K. Guy - Monthly Research Problems - 1969-1973, Amer. Math. Monthly 80(1973), pp. 1120-1128.
[5] R. K. Guy - Monthly Research Problems - 1969-1983, Amer. Math. Monthly 90(1983), pp. 683-690.
[6] R. K. Guy - Unsolved Problems in Number Theory - Springer-Verlag, 1981, problem B 39, 53.
[7] V. L. Klee - On a conjecture of Carmichaël - Bull. Amer. Math. Soc 53 (1947), pp. 1183-1186.
[8] V. L. Klee - Is there a n for which $\phi(x)$ has a unique solution? - Amer. Math. Monthly. 76(1969), pp. 288-289.
[9] P. Masai et A. Valette - A lower bound for a counterexample to Carmichaël's conjecture - Boll. Unione Mat. Ital. (6) A1(1982), pp. 313316.
[10] F. Gh. Smarandache - On Carmichaël's conjecture - Gamma, Braşov, XXIV, Year VIII, 1986.

