BENCZE MIHÁLY FLORENTIN SMARANDACHE About the characteristic function of the set

In Florentin Smarandache: "Collected Papers", vol. III. Oradea (Romania): Abaddaba, 2000.

About the characteristic function of the set ${ }^{1}$

In our paper we give a method, based on characteristic function of the set, of resolving some difficult problem of set theory found in high school study.

Definition:Let be $\mathrm{A} \subset \mathrm{E} \neq \theta$ (a universal set), then the $\mathrm{f}_{\mathrm{A}}: \mathrm{E} \rightarrow\{0,1\}$, where the function

$$
f_{A}(x)=\left\{\begin{array}{l}
1, \text { if } x \in A \\
0, \text { if } x \notin A
\end{array}\right.
$$

is named the characteristic function of the set A.
Theorem 1. Let $A, B \subset E$. In this case $f_{A}=f_{B}$ if and only if $A=B$.
Proof.
$f_{A}(x)=\left\{\begin{array}{l}1, \text { if } x \in A=B \\ 0, \text { if } x \notin A=B\end{array} \quad=f_{B}(x)\right.$
Reciprocally: In case of any $x \in A, f_{A}(x)=1$, but $f_{A}=f_{B}$ and for that $f_{B}(x)=1$, namely $x \in B$ from where $A \subset B$. The same way we prove that $B \subset A$, namely $A=B$.

Theorem 2. $\mathrm{f}_{\tilde{A}}=1-\mathrm{f}_{\mathrm{A}}$, where $\tilde{A}=\mathrm{C}_{\mathrm{L}} \mathrm{A}$.
Proof.

$$
\begin{aligned}
& f_{\tilde{A}}(x)=\left\{\begin{array}{l}
1, \text { if } x \in \tilde{A} \\
0, \text { if } x \notin \tilde{A}
\end{array}=\left\{\begin{array}{l}
1, \text { if } x \notin A \\
0, \text { if } x \in A
\end{array}\right.\right. \\
& =\left\{\begin{array}{ll}
1-0, & \text { if } x \notin A \\
1-1, & \text { if } x \in A
\end{array}=1-\left\{\begin{array}{l}
0, \text { if } x \notin A \\
\text { if, } x \notin A
\end{array}=1-f_{\Lambda}(x) .\right.\right.
\end{aligned}
$$

Theorem 3. $\mathrm{f}_{\mathrm{A} \subset 13}=\mathrm{f}_{\mathrm{A}} * \mathrm{f}_{13}$
Proof.
$f_{A \cap B}(x)=\left\{\begin{array}{l}1, \text { if } x \in A \cap B \\ 0, \text { if } x \notin A \cap B\end{array}=\left\{\begin{array}{l}1, \text { if } x \in A \text { and } x \in B \\ 0, \text { if } x \notin A \text { or } x \notin B\end{array}\right.\right.$
$=\left\{\begin{array}{l}1, \text { if } x \in A, x \in B \\ 0, \text { if } x \in A, x \notin B \\ 0, \text { if } x \notin A, x \in B \\ 0, \text { if } x \notin A, x \notin B\end{array}=\left(\left\{\begin{array}{l}1 \text { if } x \in A \\ 0 \text { if } x \notin A\end{array}\right) \cdot\left(\left\{\begin{array}{l}1 \text { if } x \in B \\ 0 \text { if } x \notin B\end{array}\right)\right.\right.\right.$
$=f_{A}(x) f_{B}(x)$
The theorem can be generalized by induction:
Theorem 4.

$$
\mathrm{f}_{n_{k}}^{n} A_{k}=\prod_{k=1}^{n} f_{A_{k}}
$$

COLLECTED PAPERS, vol. III

Consequence. For any $n \in N^{*} f_{M}^{n}=f_{M}$
Proof. In the previous theorem we write $A_{1}=A_{2}=\ldots=A_{n}=M$.
Theorem 5 .
$\mathrm{f}_{A \cup B}=\mathrm{f}_{\mathrm{A}}+\mathrm{f}_{\mathrm{B}}-\mathrm{f}_{\mathrm{A}} \mathrm{f}_{13}$.
Proof.
Can be generalized by induction:
Theorem 6. $f_{\underset{k}{n} A_{k}^{n}}^{n}=\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<\ldots<i_{i} \leq n}^{n}(-1)^{k-1} f_{A_{i}} f_{A_{i}} \ldots f_{A_{i_{k}}}$
Theorem 7. $f_{A-B}=f_{A}\left(1-f_{B}\right)$
Proof. $f_{A-13}=f_{A 15}=f_{A} f_{15}=f_{A}\left(1-f_{B}\right)$.
Can be generalized by induction :
Theorem 8. $\quad f_{\Lambda_{1}-\Lambda_{2}} \cdots A_{n}=\sum_{k=1}^{n}(-1)^{k-1} f_{A_{1}} f_{A_{i}} \ldots f_{A_{i}}$.
Theorem 9. $f_{A A B}=f_{A}+f_{B}-2 f_{A B}$
Proof. $\quad \mathrm{f}_{A \triangle B}=\mathrm{f}_{A \cup B-\Lambda \cap B}=\mathrm{f}_{A C B}\left(1-\mathrm{f}_{A \subset B}\right)=$

$$
=\left(f_{A}+f_{B}-f_{A} f_{B}\right)\left(1-f_{A} f_{B}\right)=f_{A}+f_{B}-2 f_{A} f_{B} .
$$

Can be generalized by induction:
Theorem 10.
$F \Delta_{k}^{n}: \Lambda_{k}=\sum_{k=1}^{n}(-2)^{k-1} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} f_{A_{i}} \Lambda_{i}, \cdots \Lambda_{i_{k}}$.
Theorem 11. $f_{A \times B}(x, y)=f_{A}(x) f_{B S}(y)$
Proof. If $(x, y) \in A X B$, then $f_{A X B}(x, y)=1$ and $x \in A$, namely $f_{A}(x)=1$ and $y \in B$, namely $f_{13}(y)=1$, so $f_{A}(x) f_{13}(y)=1$. If $(x, y) \notin A X B$, then $f_{A X B}(x, y)$ $=0$ and $x \notin A$, namely $f_{\Lambda}(x)=0$ or $y \notin B$, namely $f_{y}(B)=0$ so $f_{A}(x) f_{B}(y)=0$. Can be generalized by induction.

Theorem 12.

$$
\mathrm{f}_{\mathrm{x}}^{\mathrm{k}:} \mathrm{A}_{\mathrm{k}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\prod_{\mathrm{k}:}^{\mathrm{n}} \mathrm{f}_{\mathrm{A}_{\mathrm{k}}}\left(\mathrm{x}_{\mathrm{k}}\right) .
$$

Theorem 13. (De Morgan)

$$
\bigcup_{k=1}^{n} A_{k}=\bigcap_{k=1}^{n} \bar{A}_{k}
$$

Proof. $\quad \frac{\int_{k} A_{k}}{\pi}=1-f \underbrace{n}_{k i} A_{k}=$

$$
\begin{aligned}
& 1-\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}^{n} f_{A_{i}} f_{A_{i}} \ldots f_{A_{i_{k}}}= \\
& \prod_{k=1}^{n}\left(1-f_{A_{k}}\right)=\prod_{k=1}^{n} f_{\Lambda_{k}}=f_{k}^{n} \bar{n}_{\bar{A}_{k}} .
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{f}_{A, 13}=\mathrm{f}_{\overline{\mathrm{AB}}}=\mathrm{f}_{\bar{A} \overline{13}}=1-\mathrm{f}_{\bar{A} \overline{C B}}=1-\mathrm{f}_{\mathrm{A}} \mathrm{f}_{13}= \\
& =1-\left(1-\mathrm{f}_{\mathrm{A}}\right)\left(1-\mathrm{f}_{13}\right)=\mathrm{f}_{A}+\mathrm{f}_{13}-\mathrm{f}_{A} \mathrm{f}_{13} \text {. }
\end{aligned}
$$

We prove in the same way the following theorem:
Theorem 14. (De Morgan) $\bigcap_{k=1}^{n} A_{k}=\bigcup_{k=1}^{n} \bar{A}_{k}$.
Theorem 15.
$\left(\bigcup_{k=1}^{n} A_{k}\right) \cap M=\bigcup_{k=1}^{n}\left(A_{k} \cap M\right)$
Proof. $\quad f\left(\bigcup_{k=1}^{n} A_{k}\right) \cap M=f \bigcup_{k=1}^{n} A_{k} f_{M}=$
$\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}^{n} f_{A_{i}} f_{A_{i 2}} \ldots f_{A_{i_{k}}} f_{M}=$
$\sum_{k=1}^{n}(-1)^{k-i} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}^{n} f_{A_{i_{1}}} f_{A_{i_{2}}} \ldots f_{A_{i_{k}}} f_{M}^{k}=$
$\sum_{k=1}^{n}(-1)^{k-1} \sum_{i \leq i_{i}<\ldots<i_{k} \leq n}^{n} f_{A_{i 1}} \cap M f_{A_{i 2}} \cap M \ldots f_{A_{i k}} \cap M=f_{k=1}^{n}\left(A_{k} \cap M\right)$.
In the same way we prove that:
Theorem 16.

$$
\left(\bigcap_{k=1}^{n} A_{k}\right) \cup M=\bigcap_{k=1}^{n}\left(A_{k} \cup M\right)
$$

Theorem 17.

$$
\left(\Delta_{k=1}^{n} A_{k}\right) \cap M=\Delta_{k=1}^{n}\left(A_{k} \cap M\right)
$$

Application.

$$
\left(\Delta_{k=1}^{n} A_{k}\right) \cup M=\Delta_{k=1}^{n}\left(A_{k} \cup M\right) \quad \text { if and only if } M=\phi .
$$

Theorem 18.

$$
\operatorname{MX}\left(\bigcup_{k=1}^{n} A_{k}\right)=\bigcup_{k=1}^{n}\left(M X A_{k}\right) .
$$

Proof. f $\operatorname{MX}\left(\bigcup_{k=1}^{n} A_{k}\right)(x, y)=f_{M}(y) f_{\bigcup_{k=1}^{n}}^{n} A_{k}(x)=$
$\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<\ldots i_{1} \leq n}^{n} f_{A_{1}}(x) f_{A_{1}}(x) \ldots f_{A}(x) f_{i_{k}}(y)=$
$\sum_{k=1}^{n}(-1)^{k-i} \sum_{1 \leq i_{1}<\ldots<i_{i} \leq n}^{n} f_{A_{1}}(x) f_{A_{i}}(x) \ldots f_{A_{i_{k}}}(x) f_{M}^{k}(y)=$
$\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i<\ldots<i_{k} \leq n^{1}}^{n} f_{A_{1}}(x, y) \ldots f_{i_{k}}^{\operatorname{AXM}}(x, y)=f \bigcup_{k=1}^{n}\left(\operatorname{MXA}_{k}\right)$

In the same way we prove that:
Theorem 19.

$$
\operatorname{MX}\left(\bigcap_{k=1}^{n} A_{k}\right)=\bigcap_{k=1}^{n}\left(\operatorname{MXA}_{k}\right) .
$$

Theorem 20.
$\operatorname{MX}\left(A_{1}-A_{2}-\ldots-A_{n}\right)=\left(M X A_{1}\right)-\left(\right.$ MXA $\left._{2}\right)-\ldots-\left(\right.$ MXA $\left._{n}\right)$
Theorem 21. $\left(A_{1}-A_{2}\right) \cup\left(A_{2}-A_{3}\right) \cup \ldots \cup\left(A_{n-1}-A_{n}\right) \cup\left(A_{n}-A_{i}\right)=$
$\bigcup_{k=1}^{n} A_{k}-\bigcap_{k=1}^{n} A_{k}$.
Proof 1. f $\left(A_{i}-A_{2}\right) \cup \ldots\left(A_{n}-A_{i}\right)=$
$\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}^{n} f_{A_{i}} A_{i_{2}} \ldots f_{A_{i_{k}}} A_{i_{i}}=$
$\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}^{n}\left(f_{A_{1}}, f_{A_{i_{2}}} f_{A_{i_{1}}} f_{A_{2}}\right) \ldots\left(f_{A_{i_{k}}} f_{i_{1}} f_{A_{i_{k}}} \lambda_{i_{1}}=\right.$
$\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{i}<\ldots<i_{k} \leq n}^{n} f_{A_{i}} \ldots f_{i_{k}}\left(1-\prod_{p=1}^{n} f_{A_{p}}\right)=$
$\mathrm{f} \bigcup_{k=1}^{n} A_{k}\left(1-f \bigcap_{k=1}^{n} A_{k}\right)=\mathrm{f} \bigcup_{k=1}^{n} A_{k}-\bigcap_{k=1}^{n} A_{k}$
Proof 2. Let $x \in \bigcup_{i=1}^{n}\left(A_{i}-A_{i, 1}\right)$, (where $\left.A_{n: 1}=A_{i}\right)$, then there ex-
ists k such that $x \in\left(A_{k}-A_{k+1}\right)$, namely
$x \notin\left(A_{k} \cap A_{k \cdot 1}\right) \subset A_{1} \cap A_{2} \cap \ldots \cap A_{n}$, namely $x \notin A_{1} \cap \ldots \cap A_{n}$ and
$x \in \bigcup_{k=1}^{n} A_{k}-\bigcap_{k=1}^{n} A_{k}$
Now we prove the inverse statement:
Let $x \in \bigcup_{k=1}^{n} A_{k}-\bigcap_{k=1}^{n} A_{k}$, we show that there exists k such that
$x \in A_{k}$ and $x \notin A_{k, 1}$. On the contrary it would result that for any $k \in\{1,2, \ldots, n), x \in A_{k}$ and $x \in A_{k, 1}$ namely $x \in \bigcup_{k=1}^{n} A_{k}$, it results
that there exists p such that $x \in A_{p}$, but from the previous reasoning it result that $x \in A_{p ;}$, and using this we consequently obtain that $x \in A_{k}$ for $k=\bar{p}, n$. But from $x \in A_{n}$ we get that $x \in A_{i}$ using consequently, it results that $x \in A_{k}, k=1, p$, from where $x \in A_{k}, k=1, n$, namely $x \in A_{1} \cap \ldots \cap A_{n}$, that is a contradiction. Thus there exists r such that $x \in \Lambda_{r}$

FLORENTIN SMARANDACHE

and $x \notin A_{r, 1}$, namely $x \in\left(A_{r}-A_{r, 1}\right)$ and so $x \in \bigcup_{k=1}^{n}\left(A_{k}-A_{k, 1}\right)$.
In the same way we prove the following theorem:
Theorem 22. $\left(A_{1} \Delta A_{2}\right) \cup\left(A_{2} \Delta A_{3}\right) \cup \ldots \cup\left(A_{n-1} \Delta A_{n}\right)=\bigcup_{k=1}^{n} A_{k}-\bigcap_{k=1}^{n} A_{k}$.
Theorem 23. $\left(A_{1} X A A_{2} X \ldots A_{k}\right) \cap\left(A_{k \cdot 1} X A_{k \cdot 2} X \ldots A_{2 k}\right)$ $\cap\left(A_{n} X A_{1} X \ldots X A_{k-1}\right)=\left(A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right)^{k}$.

Proof. f $\left(A_{1} x \times x A_{k}\right) \cap \ldots\left(A_{n} \times A_{1} \times \ldots x A_{k}\right)\left(x_{1}, \ldots, x_{n}\right)=$
$\mathrm{fA}_{1} \mathrm{x} \ldots \mathrm{A}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \ldots \mathrm{fA}_{\mathrm{n}} \mathrm{x} \ldots \mathrm{xA}_{\mathrm{k}, 1}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=$
$\left(f A_{1}\left(x_{1}\right) \ldots f A_{k}\left(x_{k}\right)\right) \ldots\left(\mathrm{fA}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}\right) \ldots \mathrm{fA}_{\mathrm{k}-1}\left(\mathrm{x}_{\mathrm{k}-\mathrm{l}}\right)=\right.$
$f^{k} A_{i},\left(x_{1}\right) \ldots f^{k} A_{n}\left(x_{n}\right)=f^{k} A_{1} \cap \ldots \cap A_{n}\left(x_{1}, \ldots, x_{n}\right)=$
$f\left(A_{1} \cap \ldots \cap A_{a}\right)^{k}\left(x_{1}, \ldots, x_{n}\right)$.
Theorem 24. ($\mathrm{P}(\mathrm{E}), \mathrm{U}$) is a commutative monoid.
Proof. For any $A, B \in P(E) ; A \cup B \in P(E)$, namely the intern operation. Because $(A \cup B) \cup C=A \cup(B \cup C)$ is associative, $A \cup B=B \cup A$ commutative, and because $\mathrm{A} \cup \phi=\mathrm{A}$ then ϕ is the neutral element.

Theorem 25. ($\mathrm{P}(\mathrm{E}), \cap)$ is a commutative monoid.
Proof. For any $A, B \in P(E) ; A \cap B \in P(E)$ namely intern operation. (A $\cap \mathrm{B}) \cap \mathrm{C}=\mathrm{A} \cap(\mathrm{B} \cap \mathrm{C})$ associative, $\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$, commutative $\mathrm{A} \cap \mathrm{E}=\mathrm{A}, \mathrm{E}$ is the neutral element.

Theorem 26. $(\mathrm{P}(\mathrm{E}), \Delta)$ is an abellan group.
Proof. For any $A, B \in P(E) ; A \Delta B \in P(E)$, namely the intern operation. $\mathrm{A} \Delta \mathrm{B}=\mathrm{B} \Delta \mathrm{A}$ commutative. The proof of associativity is in the XII class manual as a problem. We prove it, using the characteristic function of the set.
$\mathrm{f}(\mathrm{A} \Delta \mathrm{B}) \Delta \mathrm{C}=4 \mathrm{f}_{\mathrm{A}} \mathrm{f}_{\mathrm{B}} \mathrm{f}_{\mathrm{C}}-2 \mathrm{f}_{\mathrm{A}} \mathrm{f}_{\mathrm{B}}+\mathrm{f}_{\mathrm{B}} \mathrm{f}_{\mathrm{C}}+\mathrm{f}_{\mathrm{C}} \mathrm{f}_{A}+\mathrm{f}_{A}+\mathrm{f}_{\mathrm{B}}+\mathrm{f}_{\mathrm{C}}=\mathrm{f}_{\mathrm{A}} \Delta(\mathrm{B} \Delta \mathrm{C})$
Because $\mathrm{A} \Delta \phi=\mathrm{A}, \phi$ is the neutral element and because $\mathrm{A} \Delta \mathrm{A}=\phi ; \mathrm{A}$ is the symmetric element itself.

Theorem 27. $(\mathrm{P}(\mathrm{E}), \Delta, \cap)$ is a commutative Boole ring with divisor of zero.

Proof. Because of the previous theorem it satisfies the commutative ring axioms. Now we prove that it has a divisor of zero. If $A \neq \phi$ and $\mathrm{B} \neq \phi$ are two disjoint sets, then $\mathrm{A} \cap \mathrm{B}=\phi$, thus it has divisor of zero. From Theorem 17 we get that it is distributive for $\mathrm{n}=2$. Because for any $\mathrm{A} \in$ $\mathrm{P}(\mathrm{E}) ; \mathrm{A} \cap \mathrm{A}=\mathrm{A}$ and $\mathrm{A} \Delta \mathrm{A}=\phi$ it also satisfies the Boole-type axioms.

Theorem 28. Let be $\mathrm{H}=\{\mathrm{f} \mid \mathrm{f}: \mathrm{E} \rightarrow\{0,1\}\}$, then (H, \oplus) is an A belian group, where $\mathrm{f}_{\Lambda} \oplus \mathrm{f}_{\mathrm{B}}=\mathrm{f}_{A}+\mathrm{f}_{B}-2 \mathrm{f}_{A} \mathrm{f}_{\mathrm{B}}$ and $(\mathrm{P}(\mathrm{E}), \Delta) \cong(\mathrm{H}, \oplus)$.

Proof. Let $F: P(E) \rightarrow H$, where $F(A)=f_{A}$, then from the previous theorem we get that it is bijective and because
$F(A \Delta B)=f A \Delta B=F(A) \oplus F(B)$ it is compatible.
Theorem 29. $\operatorname{card}\left(A_{1} \Delta A_{n}\right) \leq \operatorname{card}\left(A_{1} \Delta A_{2}\right)+$
$+\operatorname{card}\left(\mathrm{A}_{2} \Delta \mathrm{~A}_{3}\right)+\cdots+\operatorname{card}\left(\mathrm{A}_{\mathrm{n}-\mathrm{i}} \Delta \mathrm{A}_{\mathrm{n}}\right)$
Proof. By induction. If $n=2$, then it is true, we show that for $n=3$ it is also true. Because $\left(A_{1} \cap A_{2}\right) \cup\left(A_{2} \cap A_{3}\right) \subseteq A_{2} \cup\left(A_{1} \cap A_{3}\right)$;
$\operatorname{card}\left(\left(\Lambda_{1} \operatorname{cap} A_{2}\right) \cup\left(A_{2} \cap A_{3}\right)\right) \leq \operatorname{card}\left(\Lambda_{2} \cup\left(A_{1} \cap A_{\checkmark}\right)\right)$ but
$\operatorname{card}(\mathrm{M} \cup \mathrm{N})=\operatorname{cardM}+\operatorname{cardN}-\operatorname{card}(\mathrm{M} \cap \mathrm{N})$ and thus
$\operatorname{card} A_{2}+\operatorname{card}\left(A_{1} \cap A_{3}\right)-\operatorname{card}\left(A_{1} \cap A_{2}\right)-\operatorname{card}\left(A_{2} \cap A_{3}\right) \geq 0$ can be writen as cardA $+\operatorname{card} A_{3}-2 \operatorname{card}\left(A_{1} \cap A_{3}\right) \leq$
$\left(\operatorname{card} A_{1}+\operatorname{card} A_{2}-2 \operatorname{card}\left(A_{1} \cap A_{2}\right)\right)+\left(\operatorname{card} A_{2}+\operatorname{card} A_{3}-2 \operatorname{card}\left(A_{2} \cap A_{3}\right)\right)$. But because of $(M \Delta N)=\operatorname{cardM}+\operatorname{cardN}-2 \operatorname{card}(M \cap N)$ then $\operatorname{card}\left(A_{1} \Delta A_{3}\right)$ $\leq \operatorname{card}\left(\mathrm{A}_{1} \Delta \mathrm{~A}_{2}\right)+\operatorname{card}\left(\mathrm{A}_{2} \Delta \mathrm{~A}_{3}\right)$. The proof of this step of the induction relies on the above method.

Theorem 30. $\left(\mathrm{P}^{2}(\mathrm{E}), \operatorname{card}(\mathrm{A} \Delta \mathrm{B})\right)$ is a metric space.
Proof. Let $d(A, B)=\operatorname{card}(A \Delta B): P(E) x P(E) \rightarrow R$.

1. $d(A, B)=0 \Leftrightarrow \operatorname{card}(A \Delta B)=0 \Leftrightarrow \operatorname{card}((A-B) \cup(B-A))=0$ but because $(A-B) \cap(B-A)=\phi$ we get $(A-B)+\operatorname{card}(B-A)=0$ and because $(\mathrm{A}-\mathrm{B})=0$ and $\operatorname{card}(\mathrm{B}-\mathrm{A})=\mathrm{O}$, then $\mathrm{A}-\mathrm{B}=\phi, \mathrm{B}-\mathrm{A}=\phi$ and $\mathrm{A}=\mathrm{B}$.
2. $d(A, B)=d(B, A)$ results from $A \Delta B=B \Delta A$.
3. In consequence of the previous theorem
$d(A, C) \leq d(A, B)+d(B, C)$.
As result of the above three properties it is a metric space.

PROBLEMS

Problem 1.
Let $A=B \cup C$ and $f: P(A) \rightarrow P(A) X P(A)$, where
$f(x)=(X \cup B, X \cup C)$. Prove that f is injective if and only if $B \cap C=\phi$.
Solution 1. If f is injective. Then
$\mathrm{f}(\phi)=(\phi \cup \mathrm{B}, \phi \cup \mathrm{C})=(\mathrm{B}, \mathrm{C})=((\mathrm{B} \cap \mathrm{C}) \cup \mathrm{B},(\mathrm{B} \cap \mathrm{C}) \cup \mathrm{C})-\mathrm{f}(\mathrm{B} \cap \mathrm{C})$ from where $\mathrm{B} \cap \mathrm{C}=\phi$. Now reciprocally: Let $\mathrm{B} \cap \mathrm{C}=\phi$, then $\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{Y})$, it result, that $\mathrm{X} \cup \mathrm{B}=\mathrm{Y} \cup \mathrm{B}$ and $\mathrm{X} \cup \mathrm{C}=\mathrm{Y} \cup \mathrm{C}$ or $\mathrm{X}=\mathrm{X} \cup \phi=\mathrm{X} \cup(\mathrm{B} \cap \mathrm{C})=$ $(\mathrm{X} \cup \mathrm{B}) \cap(\mathrm{X} \cup \mathrm{C})=(\mathrm{Y} \cup \mathrm{B}) \cap(\mathrm{Y} \cup \mathrm{C})=\mathrm{Y} \cup(\mathrm{B} \cap \mathrm{C})=\mathrm{Y} \cup \phi=\mathrm{Y}$ namely it is injective.

Solution 2. Let $\mathrm{B} \cap \mathrm{C}=\phi$ passing over the set function $\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{Y})$ if and only if $X \cup B=Y \cup B$ and $X \cup C=Y \cup C$, namely $f_{X X B}=f_{X B B}$ and
$f_{X X X}=f_{Y X X}$ or $f_{X}+f_{B B}-f_{X} f_{B B}=f_{Y}+f_{B}-f_{Y} f_{B}$ and
$\mathrm{f}_{\mathrm{X}}+\mathrm{f}_{\mathrm{C}^{-}}-\mathrm{f}_{\mathrm{X}} \mathrm{f}_{\mathrm{C}}=\mathrm{f}_{\mathrm{Y}}+\mathrm{f}_{\mathrm{C}}-\mathrm{f}_{\mathrm{Y}} \mathrm{f}_{\mathrm{c}}$ from where
$\left(f_{X}-f_{Y}\right)\left(f_{B}-f_{C}\right)=0$. Because $A=B \cup C$ and $B \cap C=\phi$ therefore

$$
\left(f_{B} f_{C}\right)(u)=\left\{\begin{array}{l}
1, \text { if } u \in B \\
-1, \text { if } u \in C
\end{array} \quad \neq 0\right.
$$

therefore $f_{X}-f_{Y}=0$, namely $X=Y$ and thus it is injective.
Generalization. Let $M=\bigcup_{k=1}^{n} A_{k}$ and $f: P(A) \rightarrow P^{n}(A)$, where
$f(X)=\left(X \cup A_{1}, X \cup A_{2}, \ldots, X \cup A_{n}\right)$. Prove that f is injective if and only if $A_{1} \cap \mathrm{~A}_{2} \cap \ldots \cap \mathrm{~A}_{\mathrm{n}}=\phi$.

Problem 2. Let $\mathrm{E} \neq \phi$ and $\mathrm{A} \in \mathrm{P}(\mathrm{E})$ and
$f: P(E) \rightarrow P(E) x P(E)$, where $f(X)=(X \cap A, X \cup A)$.
a. Prove that f is injective
b. Prove that $\{f(x), x \in P(E)\}=\{(M, N) \mid M \subset A \subset N \subset E\}=K$.
c. Let $g: P(E) \rightarrow K$, where $g(X)=f(X)$. Prove that g is bijective and compute its inverse.

Solution.
a. $f(X)=f(Y)$, namely $(X \cap A, X \cup A)=(Y \cap A, Y \cup A)$ and so
$X \cap A=Y \cap A, X \cup A=Y \cup A$, from where $X \Delta A=Y \Delta A$ or
$(\mathrm{X} \Delta \mathrm{A}) \Delta \mathrm{A}=(\mathrm{Y} \Delta \mathrm{A}) \Delta \mathrm{A}, \mathrm{X} \Delta(\mathrm{A} \Delta \mathrm{A})=\mathrm{Y} \Delta(\mathrm{A} \Delta \mathrm{A}), \mathrm{X} \Delta \phi=\mathrm{Y} \Delta \phi$ and thus $X=Y$, namely f is injective.
b. $\{\mathrm{f}(\mathrm{X}), \mathrm{X} \in \mathrm{P}(\mathrm{E})\}=\mathrm{f}(\mathrm{P}(\mathrm{E}))$. We show that $\mathrm{f}(\mathrm{P}(\mathrm{E})) \subset \mathrm{K}$. For any (M, N) $\in f(\mathrm{P}(\mathrm{E})), \exists \mathrm{X} \in \mathrm{P}(\mathrm{E}): \mathrm{f}(\mathrm{X})=(\mathrm{M}, \mathrm{N})$;
$(X \cap A, X \cup A)=(M, N)$. From here $X \cap A=M, X \cup A=N$, namely M $\subset A$ and $A \subset N$ thus $M \subset A \subset N$ and so $(M, N) \in X$. Now we show that $K \subset$ $f(P(E))$, for any $(M, N) \in K, \exists X \in P(E)$ so that $f(X)=(M, N) \cdot f(X)=(M, N)$, namely $(X \cap A, X \cup A)=(M, N)$ from where $X \cap A=M$ and $X \cup A=N$, namely
$X \Delta A=N-M,(X \Delta A) \Delta A=(N-M) \Delta A, X \Delta \phi=(N-M) \Delta A$,
$\mathrm{X}=(\mathrm{N}-\mathrm{M}) \Delta \mathrm{A}, \mathrm{X}=(\mathrm{N} \cap \overline{\mathrm{M}}) \Delta \mathrm{A}, \mathrm{X}=((\mathrm{N} \cap \mathrm{M})-\mathrm{A}) \cup(\mathrm{A}-(\mathrm{N} \cap \mathrm{M})=$
$((\mathrm{N} \cap \overline{\mathrm{M}}) \cap A) \cup(\mathrm{A} \cap(\overline{\mathrm{N}} \cap \overline{\mathrm{M}}))=(\mathrm{N} \cap(\overline{\mathrm{M}} \cap \overline{\mathrm{A}})) \cup(\mathrm{A} \cap(\mathrm{N} \cap \overline{\mathrm{M}}))=$
$(\mathrm{N} \cap \overline{\mathrm{A}}) \cup(\mathrm{A} \cap \overline{\mathrm{N}}) \cup(\mathrm{A} \cap \mathrm{M}))=(\mathrm{N} \cap \bar{A}) \cup(\phi \cup \mathrm{M})=(\mathrm{N}-\mathrm{A}) \cup \mathrm{M}$.
From here we get the unic solution:
$\mathrm{X}=(\mathrm{N}-\mathrm{A}) \cup \mathrm{M}$.

We test $\mathrm{f}((\mathrm{N}-\mathrm{A}) \cup \mathrm{M})=(((\mathrm{N}-\mathrm{A}) \cup \mathrm{M}) \cap \mathrm{A},((\mathrm{N}-\mathrm{A}) \cup \mathrm{M}) \cup \mathrm{A})$ but
$((\mathrm{N}-\mathrm{A}) \cup \mathrm{M}) \cap \mathrm{A}=((\mathrm{N} \cap \overline{\mathrm{A}}) \cup \mathrm{M}) \cap \mathrm{A}=((\mathrm{N} \cap \overline{\mathrm{A}}) \cap \mathrm{A}) \cup(\mathrm{M} \cap \mathrm{A})=$
$(\mathrm{N} \cap(\overline{\mathrm{A}} \cap \mathrm{A})) \cup \mathrm{M}=(\mathrm{N} \cap \phi) \cup \mathrm{M}=\phi \cup \mathrm{M}=\mathrm{M}$ and
$((N-A) \cup M) \cup A=(N-A) \cup(M \cup A)=(N-A) \cup A=$
$(N \cap \bar{A}) \cup A=(N \cup A) \cap(\bar{A} \cup A)=N \cap E=N, f((N-A) \cup M)=(M, N)$. Thus f $(P(F))=K$.
c. From point a. we get g is injective, from point b. we get g is surjective, thus g is bijective. The inverse function is :
$\mathrm{g}^{-1}(\mathrm{M}, \mathrm{N})=(\mathrm{N}-\mathrm{A}) \cup \mathrm{M}$.
Problem 3. Let $\mathrm{E} \neq \phi, \mathrm{A}, \mathrm{B} \in \mathrm{P}(\mathrm{E})$ and
$f: P(E) \rightarrow P(E) X P(E)$, where $f(X)=(X \cap A, X \cap B)$.
a. Give the necessary and sufficient condition such that f is injective.
b. Give the necessary and suffcient condition such that f is surjective.
c. Supposing that f is bijective, compute its inverse.

Solution.
a. Suppose f is injective. Then: $f(A \cup B)=$
$((A \cup B) \cap A,(A \cup B) \cap B)=(A, B)=(E \cap A, E \cap B)=f(E)$, from where $A \cup B=E$, Now we suppose that $A \cup B=E$, it results that
$X=X \cap E=X \cap(A \cup B)=(X \cap A) \cup(X \cap B)=(Y \cap A) \cup(Y \cap B)=Y \cap(A \cup B)=Y$ $\cap E=Y$, namely from $f(X)=f(Y)$ we get that
$\mathrm{X}=\mathrm{Y}$, namely f is injective.
b. Suppose f is surjective, for any $M, N \in P(A) X P(B)$, there exists $\mathrm{X} \in \mathrm{P}(\mathrm{E}), \mathrm{f}(\mathrm{X})=(\mathrm{M}, \mathrm{N}),(\mathrm{X} \cap \mathrm{A}, \mathrm{X} \cap \mathrm{B})=(\mathrm{M}, \mathrm{N}), \mathrm{X} \cap \mathrm{A}=\mathrm{M}, \mathrm{X} \cap \mathrm{B}=\mathrm{N}$. In special cases $(\mathrm{M}, \mathrm{N})=(\mathrm{A}, \phi)$, there exists $\mathrm{X} \in \mathrm{P}(\mathrm{E})$, from $\mathrm{X} \supset \mathrm{A}, \phi=\mathrm{X} \cap \mathrm{B} \supset \mathrm{A} \cap \mathrm{B}, \mathrm{A} \cap \mathrm{B}=\phi$. Now we suppose that $A \cap B=\phi$ and show that it is surjective. Let $(M, N) \in$ $\mathrm{P}(\mathrm{A}) \mathrm{XP}(\mathrm{B})$ then $\mathrm{M} \subset \mathrm{A}, \mathrm{N} \subset \mathrm{B}$ and $\mathrm{M} \cap \mathrm{B} \subset \mathrm{A} \cap \mathrm{B}=\phi$ and $\mathrm{N} \cap \mathrm{A} \subset \mathrm{B} \cap \mathrm{A}=\phi$ namely $\mathrm{M} \cap \mathrm{B}=\phi, \mathrm{N} \cap \mathrm{A}=\phi$ and $\mathrm{f}(\mathrm{M} \cup \mathrm{N})=((\mathrm{M} \cup \mathrm{N}) \cap \mathrm{A},(\mathrm{M} \cup \mathrm{N}) \cap \mathrm{B}=$ $((\mathrm{M} \cap \mathrm{A}) \cup(\mathrm{N} \cap \mathrm{A}),(\mathrm{M} \cap \mathrm{B}) \cup(\mathrm{N} \cap \mathrm{B}))=(\mathrm{M} \cup \phi, \phi \cup \mathrm{N})=(\mathrm{M}, \mathrm{N})$, for any (M, N) there exists $X=M \cup N$ such that $f(X)=(M, N)$, namely f is surjective.
c. We show that $f^{i}((M, N))=M \cup N$.

Observation. In the previous two problems we can use the characteristic function of the set as in the first problem. This method we leave to the readers.

$$
\text { Application. Let } \mathrm{E} \neq \phi, \mathrm{A}_{\mathrm{k}} \in \mathrm{P}(\mathrm{E})(\mathrm{k}=1, \ldots, \mathrm{n}) \text { and }
$$

FLORENTIN SMARANDACHE

$f: P(E) \rightarrow P^{n}(E)$, where $f(X)=\left(X \cap A_{1}, X \cap_{n} A_{2}, \ldots, X \cap A_{n}\right)$.
Prove that f is injective if and only if $\bigcup_{k=1} A_{k}=E$.
Application. Let $\mathrm{E} \neq \phi, \mathrm{A}_{\mathrm{k}} \in \mathrm{P}(\mathrm{E})(\mathrm{k}=1, \ldots, \mathrm{n})$ and
$f: P(E) \rightarrow P^{n}(E)$, where $f(X)=\left(X \cap A_{1}, X \cap A_{2}, \ldots, X \cap A_{n}\right)$.
Prove that f is surjective if and only if $\cap_{k}^{n} \tilde{A}_{k}=\phi$.
Problem 4. We name the set M convex if for any $x, y \in M$
$t x+(1-t) y \in M$, for any $t \in[0,1]$.
Prove that if $\mathrm{A}_{\mathbf{k}}(\mathrm{k}=1, \ldots, \mathrm{n})$ are convex sets, then
$\bigcap_{k=1}^{n} A_{k} \quad$ is also convex.

Problem 5. If $A_{k}(k=1, \ldots, n)$ are convex sets, then $\bigcap_{k=1}^{n} A_{k}$ is also convex .

Problem 6. Give the necessary and sufficient condition such that if A, B are convex / concave sets then $\mathrm{A} \cup \mathrm{B}$ is also convex/concave. Generalization for n set.

Problem 7. Give the necessary and sufficient condition such that if A, B are convex/concave sets then $\mathrm{A} \Delta \mathrm{B}$ is also convex/concave. Generalization for n set.

Problem 8. Let $f, g: P(E) \rightarrow P(E)$, where $f(X)=A-X$ and $g(X)=A \Delta X, A$ $\in \mathrm{P}(\mathrm{E})$. Prove that f, g are bijective and compute their inverse functions.

Problem 9. Let
$A \circ B=\{(x, y) \in R x R \mid \exists z \in R:(x, z) \in A$ and $(z, y) \in B\}$. In a particular case let $A=\{(x,\{x\}) \mid x \in R\}$ and $B=\{(\{y\}, y) \mid y \in R\}$.
Represent the A o A, B o A, B o B cases.
Problem 10.
i. If $A \cup B \cup C=D, A \cup B \cup D=C, A \cup C \cup D=B$,
$B \cup C \cup D=A$, then $A=B=C=D$.
ii. Are there different A, B, C, D sets such that
$A \cup B \cup C=A \cup B \cup D=A \cup C \cup D=B \cup C \cup D$?
Problem 11. Prove that $A \Delta B=A \cup B$ if and only if $A \cap B=\phi$.
Problem 12. Prove the following identity.

$$
\bigcap_{i, j=1, i<j}^{n} A_{k} \cup A_{j}=\bigcup_{i=1}^{n}\left(\underset{j=1, ~}{n} \bigcap_{j \neq i}^{n} A_{i}\right) .
$$

Problem 13. Prove the following identity.
$(A \cup B)-(B \cap C)=[A-(B \cap C) \cup(B-C)=(A-B) \cup(\Lambda-C) \cup(B-C)$ and
$A-[(A \cap C)-(A \cap B)]=(A-\bar{B}) \cup(A-C)$.
Problem 14. Prove that $A \cup(B \cap C)=(A \cup B) \cap C=(A \cup C) \cap B$ if and only if $A \subset B$ and $A \subset C$.

Problem 15. Prove the following identities:
$(A-B)-C=(A-B)-(C-B)$,
$(A \cup B)-(A \cup C)=B-(A \cap C)$,
$(A \cap B)-(A \cap C)=(A \cap B)-C$.
Problem 16. Solve the following system of equations:
$\left\{\begin{array}{l}A \cup X \cup Y=(A \cup X) \cap(A \cup Y) \\ A \cap X \cap Y=(A \cap X)(\mathcal{A} \cap Y) .\end{array}\right.$
Problem 17. Solve the following system of equations:
$\left\{\begin{array}{l}A \Delta X \Delta B=A \\ A \Delta Y \Delta B=B\end{array}\right.$
Problem 18. Let $X, Y, Z \subseteq A$.
Prove that: $Z=(X \cap \bar{Z}) \cup(Y \cap \bar{Z}) \cup(\bar{X} \cap Z \cap \bar{Y})$ if and only if
$\mathrm{X}=\mathrm{Y}=\phi$.
Problem 19. Prove the following identity:
$\bigcup_{k=1}^{n}\left[A_{k} \cup\left(B_{k}-C\right)\right]=\left(\bigcup_{k=1}^{n} A_{k}\right) \cup\left[\left(\bigcup_{k=1}^{n} A_{k}\right)-C\right]$.
Problem 20. Prove that: $A \cup B=(A-B) \cup(B-A) \cup(A \cap B)$.
Problem 21. Prove that:
$(\mathrm{A} \Delta \mathrm{B}) \Delta \mathrm{C}=(\mathrm{A} \cap \overline{\mathrm{B}} \cap \overline{\mathrm{C}}) \cup(\overline{\mathrm{A}} \cap \mathrm{B} \cap \overline{\mathrm{C}}) \cup(\overline{\mathrm{A}} \cap \overline{\mathrm{B}} \cap \mathrm{C}) \cup(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})$.
References:
[1] Mihály Bencze, F.Popovici, Permutaciok, Matematikai Lapok, Kolozsvar, 7-8/1991.
[2] Pellegrini Miklós, Egy ujabb kiserlet, a retegezett halmaz, M.L., Kolozsvar, 6/1978.
[3] Halmazokra vonatkozo egyenletekrol, Matematikai Lapok, Kolozsvar, 6/1970.
[4] Alkalmazasok a halmazokkal kapcsolatban, Matematikai Lapok, Kolozsvar, 3/1970.
[5] Ion Savu, Produsul elementelor intr-un grup finit comutativ, Gazeta Matematicā Perf., 1/1989.
[6] Nicolae Negoescu, Principiul includerii-excluderii, RMT $2 /$ 1987.
[7] F. C. Gheorghe, T. Spiru, Teorema de prelungire a unei
probabilități, dedusă din teorema de completare metrică, Gazeta Matematica-A., 2/1974.
[8] C. P. Popovici: Funcții Boolene, Gazeta Matematică-A, 1/1973.
[9] Algebra tankonyv IX oszt., Romania.
[10] Năstǎsescu stb., Exerciții și probleme de algebră pentru clasele IX-XII., România.
["Octogon", Vol. 6, No. 2, 86-96, 1998.]

