FLORENTIN SMARANDACHE
 An Infinity Of Unsolved Problems Concerning A Function In The Number Theory

In Florentin Smarandache: "Collected Papers", vol. II. Chisinau (Moldova): Universitatea de Stat din Moldova, 1997.

AN INFINITY OF UNSOLVED PROBLEMS CONCERNING A FUNCTION IN THE NUMBER THEORY

§1. Abstract.

W.Sierpinski has asserted to an international conference that if mankind lasted for ever and numbered the unsolved problems, then in the long run all these unsolved problems would be solved.

The purpose of our paper is that making an infinite number of unsolved problems to prove his supposition is not true. Moreover, the author considers the unsolved problems proposed in this paper can never be all solved!

Every period of time has its unsolved problems which were not previously recommended until recent progress. Number of new unsolved problems are exponentially incresing in comparison with ancient unsolved ones which are solved at present. Research into one unsolved problem may produce many new interesting problems. The reader is invited to exhibit his works about them.

§2. Introduction

We have constructed (*) a function η which associates to each non-null integer n the smallest positive integer m such that $m!$ is multiple of n. Thus, if n has the standerd form: $n=\epsilon p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}$, with all p_{i} distinct primes, all $a_{i} \in N^{*}$, and $\epsilon= \pm 1$, then $\eta(n)=\max _{1 \leq i \leq r}\left\{\eta_{p_{i}}\left(a_{i}\right)\right\}$, and $\eta(\pm 1)=0$.

Now, we define the η_{p} functions: let p be a prime and $a \in N^{*}$; then $\eta_{p}(a)$ is a smallest positive integer b such that $b!$ is a multiple of p^{a}. Constructing the sequence:

$$
\alpha_{k}^{(p)}=\frac{p^{k}-1}{p-1}, k=1,2, \ldots
$$

we have $\eta_{p}\left(\alpha_{k}^{(p)}\right)=p^{k}$, for all prime p, an all $k=1,2, \ldots$. Because any $a \in N^{*}$ is uniquely written in the form:

$$
a=t_{1} \alpha_{n_{1}}^{(p)}+\ldots+t_{l} \alpha_{n_{l}}^{(p)}, \text { where } n_{1}>n_{2}>\ldots>n_{l}>0
$$

and $1 \leq t_{j} \leq p-1$ for $j=0,1, \ldots, e-1$ and $1 \leq t_{e} \leq p$, with all n_{i}, t_{j} from N, the author proved that

$$
\eta_{p}(a)=\sum_{i=1}^{e} \eta_{p}\left(\alpha_{n_{i}}^{(p)}\right)=\sum_{i=1}^{e} t_{i} p^{n_{i}} .
$$

§3. Some Properties of the Function η

Clearly, the function η is even: $\eta(-n)=\eta(n), n \in Z^{*}$. If $n \in N^{*}$ we have:

$$
\begin{equation*}
\frac{-1}{(n-1)!} \leq \frac{\eta(n)}{n} \leq 1 \tag{1}
\end{equation*}
$$

and: $\frac{\eta(n)}{n}$ is maximum if and only if n is prime or $n=4 ; \quad \frac{\eta(n)}{n}$ is minimum if and only if $n=k!$

Clearly η is periodical function. For p prime, the functions η_{p} are increasing, not injective but on $N^{*} \rightarrow\left\{p^{k} \mid k=1,2, \ldots\right\}$ they are surjective. From (1) we find that $\eta=o\left(n^{1+\epsilon}, \epsilon>0\right.$, and $\eta=O(n)$.

The function η is generally increasing on N^{*}, that is : $(\forall) n \in N^{*},(\exists) m_{0} \in N^{*}$, $m_{0}=m_{0}(n)$, such that for all $m \geq m_{0}$ we have $\eta(m) \geq \eta(n)$ (and generally descreasing on Z_{-}^{*}; it is not injective, but it is surjective on $Z \backslash\{0\} \rightarrow N \backslash\{1\}$.

The number n is called a barrier for a number-theoretic function $f(m)$ if, for all $m<$ $n, m+f(m) \leq n$ (P.Erdös and J.Selfridge). Does $\epsilon \eta(m)$ have infinitely many barriers, with $0<\epsilon \leq 1 ?\left[\right.$ No, becuase there is a $m_{0} \in N$ suck that for all $n-1 \geq m_{0}$ we have $\eta(n-1) \geq \frac{2}{\epsilon}$ (η is generally increasing), whence $n-1+\epsilon \eta(n-1 \geq n+1$.]
$\sum_{n \geq 2} 1 / \eta(n)$ is divergent, because $1 / \eta(n) \geq 1 / n$.

Proof: Let $a_{\pi+}^{(2)}=2^{m}-1$, where $m=\quad$; then $\eta\left(2^{2^{m}}\right)=\eta_{2}\left(2^{m}\right)=$

$$
=\eta_{2}\left(1+a_{m}^{(2)}\right)=\eta_{2}(1)+\eta_{2}\left(a_{m}^{(2)}=2+2^{m}\right.
$$

§4. Glossary of Simbols and Notes

A-sequence:	an integer sequence $1 \leq a_{1}<a_{2}<\ldots$ so that no a_{i} is the sum of distinct members of the sequence other than a_{i} (R. K. Guy);
Average Order :	if $f(n)$ is an arithmetical function and $g(n)$ is any simple function of n such that $f(1)+\ldots+f(n)-g(1)+\ldots+g(n)$ we say that $f(n)$ is of the average order of $g(n)$;
$d(x):$	number of pozitive divisors of \boldsymbol{x};
d_{x} :	difference between two consecutive primes: $p_{x+1}-p_{x}$;
Dirichlet Series:	a series of the form $F(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}, s$ may be real or complex;
Generating Function:	any function $F(s)=\sum_{n=1}^{\infty} \alpha_{n} u_{n}(s)$ is considered as a generating function of α_{n}; the most usual form of $u_{n}(s)$ is: $u_{n}(s)=e^{-\lambda_{n} \cdot s}$, where $\cdot \lambda_{n}$ is a sequence of positive numbers which increases steadily to infinity;
Logx:	Napierian logarithrn of x, to base ϵ;
Normal Order:	$f(n)$ has the normal order $F(n)$ if $f(n)$ is approximately $F(n)$ for almost all values of n, i.e. (2), $(\forall) \varepsilon>0,(1-\epsilon) \cdot F(n)<f(n)<$ $<(l+\epsilon) \cdot F(n)$ for almost all values of n; "almost all" n means that the numbers less than n which do not possess the property (2) is $o(x) ;$
Lipshitz-Condition:	a function f verifies the Lipshitz-condition of order $\alpha \in(0,1]$ if ($\exists) k>0:\|f(x)-f(y)\| \leq k\|x-y\|^{\alpha}$; if $\alpha=1, f$ is called a k Lipshitz-function; if $k<1, f$ is called a contractant function;
Multiplicative	
Function:	a function $f: N^{*} \rightarrow C$ for which $f(1)=2$, and $f(m \cdot n)=f(m) \cdot f(n)$ when $(m, n)=1$;
$p(x)$;	largest prime factor of x;
Uniformly	
Distributed:	a set of pionts in (a, b) is uniformly distributed if every sub-interval of (a, b) contains its proper quota of points;
Incongruent Roots:	two integers x, y which satisfy the congruence $f(x) \equiv f(y) \equiv 0$ $(\bmod m)$ and so that $x \neq y(\bmod m)$;

secuence:	a sequence of the form: $a_{1}=\ldots=a_{s}=1$ and $a_{n+s+1}=a_{n+1}+\ldots+$
	$+a_{n+s}, n \in N^{*}$ (R.Queneau);
$s(n)$:	sum of aliquot parts (divisors of n other than n) of $n ; \sigma(n)-n$;
$s^{k}(n)$:	$k^{\text {th }}$ iterate of $s(n)$;
$s^{*}(n)$:	sum of unitary aliquot parts of n;
$r_{k}(n):$	least number of numbers not exceeding n, which must contain a k-term arithmetic progression;
$\pi(x):$	number of primes not exceeding x;
$\pi(x ; a, b):$	number of primes not excedding x and congruent to a modulo b;
$\sigma(n)$:	sum of divisors of n; $\sigma_{1}(n)$;
$\sigma_{k}(n):$	sum of k -th powers of divisors of n;
$\sigma^{k}(n)$:	k -th iterate of $\sigma(n)$;
$\sigma^{*}(n):$	sum of unitary divisors of n;
$\varphi(n):$	Euler's totient function; number of numbers not exceeding n and prime to n;
$\varphi^{k}(n)$:	k-th iterate of $\varphi(n)$;
$\bar{\phi}(n)$:	$=n \Pi\left(1-p^{-1}\right)$, where the product is taken over the distinct prime divisors of n;
$\Omega(n)$:	number of prime factors of n, counting repetitions;
$w(n)$:	number of distinct prime factors of n, counting repetitions;
$\lfloor a\rfloor:$	floor of a; greatest integer not great than a;
$(m, n):$	g.c.d. (greatest common divisor) of m and n :
$[m, n]$:	l.c.d. (least common multiple) of m and n;
$\|f\|:$	modulus or absolute value of f;
$f(x) \rightarrow g(x):$	$f(x) / g(x) \rightarrow 1$ as $x \rightarrow \infty ; f$ is asymptotic to $g ;$

$$
\begin{aligned}
& f(x)=o(g(x)): \quad f(x) / g(x) \rightarrow 0 \text { as } x \rightarrow \infty ; \\
& \left.\begin{array}{l}
f(x)=O(g(x)) \\
f(x) \ll g(x)
\end{array}\right\} \text { there is a constant } c \text { such that }|f(x)|<c \cdot g(x) \text { to any } x \text {; } \\
& \Gamma(x): \quad \text { Euler's function of first case (} \gamma \text { fuaction); } \Gamma: R^{*} \rightarrow R, \Gamma(x)= \\
& =\int_{\theta}^{\infty} e^{-t} t^{x-1} d t \text {. We have } \Gamma(x)=(x-1) \text { ! } \\
& \begin{array}{ll}
\beta(x): & \text { Euler's function of second degree (beta function); } \beta: R_{+}^{*} \times R_{+}^{m} \rightarrow R_{4}, \\
& \beta(u, v)=\Gamma(u) \Gamma(v) / \Gamma(u+v)=\int_{0}^{1} t^{u-1} \cdot(1-t)^{v-1} d t ; \\
\mu(x): & \text { Möbius' function; } \mu: N \rightarrow N, \mu(1)=1 ; \mu(n)=(-1)^{k} \text { if } n \text { is the } \\
& \text { product of } k>1 \text { distinct primes; } \mu(n)=0 \text { in all others cases; }
\end{array} \\
& \theta(x): \quad \text { Tchebycheff } \theta \text {-function; } \theta: R_{+} \rightarrow R, \theta(x)=\sum \log p \text {, where the } \\
& \text { summation is taken over all primes } p \text { not exceeding } x \text {; } \\
& \Psi(x): \quad \text { Tchebycheff's } \Psi \text {-function; } \Psi(x)=\sum_{n \leq x} \Lambda(n) \text {, with } \\
& \text { - } \Lambda(n)=\left\{\begin{array}{l}
\log p, \text { if } n \text { is an integer power of the prime } p \\
0, \text { in all other cases. }
\end{array}\right.
\end{aligned}
$$

This glossary can be continued with OTHER (ARITHMETICAL) FUNCTIONS.

§5. General Unsolved Problems Concerning the Function η

(1) is there a closed expression for $\eta(n)$?
(2) Is there a good asymptotic expression for $\eta(n)$? (If yes, find it.)
(3) For a fixed non-mull integer m, does $\eta(n)$ divide $n-m$? (Particularly when $m=1$.) Of course, for $m=0$ it is trivial: we find $n=k$!, or n is squarefree, etc.
(4) Is η an algebraic finction? (If no, is there the max Card $\left\{n \in Z^{*} \mid(\exists) p \in R[x, y], p\right.$ nonnull polynomial, with $p(n, \eta(n))=0$ for all these $n\}$?) More generally we introduce the notion: g is a f-function if $f(x, g(x))=0$ for all x, and $f \in R[x, y], f$ non-null. Is η a f-function? (If no, is there the $\max \operatorname{Card}\left\{n \in Z^{*} \mid(\exists) f \in R[x, y], f\right.$ non-null, $f(n, \eta(n))=0$ for all these $\left.n\right\}$?)
(5) Let A be a set of consecutive integers from N^{*}. Find \max Card A for which η is monotonous. For example, Card $A \geq 5$, because for $A=\{1,2,3,4,5\} \eta$ is $0,2,3,4,5$, respectively.
(6) A nimber is called an η-algebraic number of degree $n \in N^{*}$ if it is a root of the polynomial

$$
\begin{equation*}
p_{\eta}(x)=\eta(n) x^{n}+\eta(n-1) x^{n-1}+\ldots+\eta(1) x^{1}=0 . \tag{p}
\end{equation*}
$$

An η-algebraic field M is the aggregate of all numbers

$$
R_{n}(\nu)=\frac{A(\nu)}{B(\nu)}
$$

where ν is a given η-algebraic number, and $A(\nu), B(\nu)$ are polynomials in ν of the form (p) with $B(\nu) \neq 0$. Study M.
(7) Are the points $p_{n}=\eta(n) / n$ uniformly distributed in the interval $(0,1)$?
(8) Is $0.0234537465114 \ldots$, where the sequence of digits is $\eta(n), n \geq 1$, an irrational number?

Is it possible to repersent all integer n under the form:
(9) $n= \pm \eta\left(a_{1}\right)^{a_{2}} \pm \eta\left(a_{2}\right)^{a_{3}} \pm \ldots \pm \eta\left(a_{k}\right)^{a_{1}}$, where the integrs k, a_{1}, \ldots, a_{k}, and the signs are conveniently chosen?
(10) But as $n= \pm a_{1}^{\eta\left(a_{1}\right)} \pm \ldots \pm a_{k}^{\eta\left(a_{k}\right)}$?
(11) But as $n= \pm a_{1}^{n\left(a_{2}\right)} \pm a_{2}^{\eta\left(a_{3}\right)} \pm \ldots \pm a_{k}^{\eta\left(a_{1}\right)}$?

Find the smallest k for which: $(\forall) n \in N^{*}$ at least one of the numbers $\eta(n), \eta(n+1), \ldots$, $\eta(n+k-1)$ is:
(12) A perfect square.
(13) A divisor of k^{n}.
(14) A multiple of fixed nonzero integer p.
(15) A factorial of a positive integer.
(16) Find a general from of the continued fraction expansion of $\eta(n) / n$, for all $n \geq 2$.
(17) Are there integers m, n, p, q, with $m \neq n$ or $p \neq q$, for which: $\eta(m)+\eta(m+1)+\ldots+$ $+\eta(m+p)=\eta(n)+\eta(n+1)+\ldots+\eta(n+q) ?$
(18) Are there integers $m, n p, k$ with $m \neq n$ and $p>0$, such that:

$$
\frac{\eta(m)^{2}+\eta(m+1)^{2}+\ldots+\eta(m+p)^{2}}{\eta(n)^{2}+\eta(n+1)^{2}+\ldots+\eta(n+p)^{2}}=k ?
$$

(19) How many primes have the form:

$$
\overline{\eta(n) \eta(n+1) \ldots \eta(n+k)}
$$

for a fixed integer k ? For example: $\overline{\eta(2) \eta(3)}=23, \overline{\eta(5) \eta(6)}=53$ are primes.
(20) Prove that $\eta\left(x^{n}\right)+\eta\left(y^{n}\right)=n\left(z^{n}\right)$ has an infinity of integer solutions, for any $n \geq \cdot 1$. Look, for example, at the solution $(5,7,2048)$ when $n=3$. (On Fermat's last theorem.) More generally: the diophantine equation $\sum_{i=1}^{k} \eta\left(x_{i}^{s}\right)=\sum_{j=1}^{m} \eta\left(y_{j}^{t}\right)$ has an infinite number of solutions.
(21) Are there m, n, k non-null positive integers, $m \neq 1 \neq n$, for which $\eta(m \cdot n)=m^{k} \cdot \eta(n)$? Clearly, η is not homogenous to degree k.
(22) Is it possilble to find two distinct numbers k, n for which $\log _{\eta\left(k^{n}\right)} \eta\left(n^{k}\right)$ be an integer? (The base is $\eta\left(k^{n}\right)$.)
(23) Let the congruens be: $h_{\eta}(x)=c_{n} x^{\eta(n)}+\ldots+c_{1} x^{\eta(1)} \equiv 0(\bmod m)$. How many incongruent roots has h_{n}, for some given constant integers n, c_{1}, \ldots, c_{n} ?
(24) We know that $e^{x}=\sum_{n=0}^{\infty} x^{n} / n!$. Calcilate $\sum_{n=1}^{\infty} x^{n(n)} / n!, \sum_{n=1}^{\infty} x^{n} / \eta(n)$! and eventually some of their properties.
(25) Find the average order of $\eta(n)$.
(26) Find some $u_{n}(s)$ for which $F(s)$ is a generating function of $\eta(n)$, and $F(s)$ have at all a simple form. Particularly, calculate Dirichlet series $F(s)=\sum_{n=1}^{\infty} \eta(n) / n^{s}$, with $s \in R$ for $s \in C)$.
(27) Does $\eta(n)$ have a normal order?
(28) We know that Euler's constant is

$$
\nu=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\ldots+\frac{1}{n}-\log n\right)
$$

Is $\lim _{n \rightarrow \infty}\left[1+\sum_{k=2}^{n} 1 / \eta(k)-\log \eta(n)\right]$ a constant? If yes, find it.
(29) Is there an m for which $\eta^{-1}(m)=\left\{a_{1}, a_{2}, \ldots, a_{p q}\right\}$ such that the numbers $a_{1}, a_{2}, \ldots, a_{p q}$ can constitute a matrix of p rows and q columns with the sum of elements on each row and each column constant? Particularly when the matrix is square.
(30) Let $\left\{x_{n}^{(s)}\right\}_{n \geq 1}$ be a s-additive sequence. Is it possible to have $\eta\left(x_{n}^{(s)}\right)=x_{m}^{(s)}, n \neq m$? But $x_{\eta(n)}^{(s)}=\eta\left(x_{n}^{(s)}\right)$?
(31) Does η verify a Lipschitz Condition?
(32) Is η a k-Lipschitz Condition?
(33) Is η a contractant function?
(34) Is it possible to construct an A-sequence a_{1}, \ldots, a_{π} such that $\eta\left(a_{1}\right), \ldots, \eta\left(a_{n}\right)$ is an A-sequence, too? Yes, for example $2,3,7,31, \ldots$ Find such an infinite sequence.

Find the greatest n such that: if a_{1}, \ldots, a_{n} constitute a p-sequence then $\eta\left(a_{1}\right), \ldots, \eta\left(a_{n}\right)$ constitute a p-sequence too; where a p-sequence means:
(35) Arithmetical progression.
(36) Geometrical progression.
(37) A complete system of modulo n residues.

Remark: let p be a prime, and p, p^{2}, \ldots, p^{p} a geometrical progression, then $\eta\left(p^{i}\right)=i p, i \in$ $\{1,2, \ldots, p\}$, constitute an arithmetical progression of length p. In this case $n \rightarrow \infty$.
(38) Let's use the sequence $a_{n}=\eta(n), n \geq 1$. Is there a recurring relation of the form $a_{n}=f\left(a_{n-1}, a_{n-2}, \ldots,\right)$ for any n ?
(39) Are there blocks of consecutive composite numbers $m+1, \ldots, m+n$ such that $\eta(m+$ 1), $\ldots, \eta(m+n)$ are composite numbers, too? Find the greatest n.
(40) Find the number of partitions of n as sum od $\eta(m), 2<m \leq n$.

MORE UNSOLVED GENERAL PROBLEMS CONCERNING THE FUNCTION η

§6. Unsolved Problems Concerning the Function η and Using the Number Sequences

41-2065) Are there non-null and non-prime integers $a_{1}, a_{2}, \ldots, a_{n}$ in the relation P, so that $\eta\left(a_{1}\right), \eta\left(a_{2}\right), \ldots, \eta\left(a_{n}\right)$ are in the retation R ? Find the greatest n with this property. (Of course, all a_{i} are distinct). Where each P, R can represent one of the following number sequences:
(1) Abundant numbers; $a \in N$ is abundant id $\sigma(a)>2 a$.
(2) Almost perfect numbers: $a \in N, \sigma(a)=2 a-1$.
(3) Amicable numbers; in this case we take $n=2 ; a, b$ are called amicable if $a \neq b$ and $\sigma(a)=\sigma(b)=a+b$.
(4) Augmented amicable numbers; in this case $n=2 ; a, b$ are called augmented amicable if $\sigma(a)=\sigma(b)=a+b-1$ (Walter E. Beck and Rudolph M. Najar).
(5) Bell numbers: $b_{n}=\sum_{k=1}^{n} S(n, k)$, where $S(n, k)$ are Stirling numbers of second case.
(6) Bernulli numbers (Jacques 1st): B_{n}, the coefficients of the development in integer sequence of

$$
\frac{1}{e^{t}-1}=1-\frac{t}{2}+\frac{B_{1}}{2!} t^{2}-\frac{B_{2}}{4!} t^{4}+\ldots+(-1)^{n-1} \frac{B_{n}}{(2 n)!} t^{2 \pi}+\ldots
$$

for $0<|t|<2 \pi$; (here we always take $\left\lfloor 1 / B_{n}\right\rfloor$).
(7) Catalan numbers; $C_{1}=1, C_{n}=\frac{1}{n}\binom{2 n-1}{n-1}$ for $n \geq 2$.
(8) Carmichael numbers; an odd composite number a, which is a pseudoprime to base b for every b relatively prime to a, is called a Charmicael number.
(9) Congruent numbers; let $n=3$, and the numbers a, b, c, we mist have $a=b(\bmod c)$.
(i0) Cullen numbers: $c_{n}=n * 2^{n}+1, n \geq 0$.
(11) C_{1}-sequence of integers; the author introduced a sequens a_{1}, a_{2}, \ldots so that:

$$
(\forall) i \in N^{*},(\exists) j, k \in N^{*}, j \neq i \neq k \neq j,: a_{i} \equiv a_{j}\left(\bmod a_{k}\right) .
$$

(12) C_{2}-sequence of integers; the author defined other sequence a_{1}, a_{2}, \ldots so that:

$$
(\forall) i \in N^{*},(\exists) j, k \in N^{*}, i \neq j \neq k \neq i,: a_{j} \equiv a_{k}\left(\bmod a_{j}\right) .
$$

(13) Deficient numbers; $a \in N^{-}, \sigma(a)<2 a$.
(14) Euler numbers: the coefficients E_{n} in the expansion of $\sec x=\sum_{n \geq 0} E_{n} x^{n} / n$; , here we will take $\left|E_{n}\right|$.
(15) Fermat numbers: $F_{n}=2^{2^{n}}+1, n \geq 0$.
(16) Fibonacci numbers: $f_{1}=f_{2} i, f_{n}=f_{n-1}+f_{n-2}, n \geq 3$.
(17) Genocchi numbers: $G_{n}=2\left(2^{2 \pi}-1\right) B_{n}$, where B_{n} are Bernulli numbers; always $G_{n} \in Z$.
(18) Harmonic mean; in this case every member of the sequence is the harmonic mean of the preceding members.
(19) Harmonic numbers; a number n is called harmonic if the harmonic mean of all divisors of n is an integer (C. Pomerance).
(20) Heteromeous numbers: $h_{n}=n\left(n+1, n \in N^{*}\right)$.
(21) K-byperperfect numbers; a is k-hyperperfect if $a=1+\sum d_{i}$, where the numeration is taken over all proper divisors, $1<d_{i}<a$, or $k \sigma(a)=(k+1) a+k-1$ (Daniel Minoli and Robert Bear).
(22) Kurepa numbers: $: n=0!+1!+2!+\ldots+(n-1)$!
(23) Lucas numbers: $L_{1}=1, L_{2}=3, L_{n}=L_{n-1}+L_{n-2, n} \geq 3$.
(24) Lucky numbers: from the natural numbers strike out all even numbers, leaving the odd numbers; apart from 1 , the first remaining number is 3 ; strike out every third member in
the new sequence; the next member remaining is 7 ; strike out every seventh member in this sequence; дext 9 remains; etc. (V.Gardiner, R.Lazarus, N.Metropolis, S.Ulam).
(25) Mersenne numbers: $M_{p}=2^{p}-1$.
(26) m-perfect numbers; a is m-perfect if $\sigma^{m}(a)=2 a$ (D.Bode).
(27) Multiply perfect (or k-fold perfect) numbers; a is k-fold perfect if $\sigma(a)=k a$.
(28) Perfect numbers; a is perfect if $\sigma(a)=2 a$.
(29) Polygonal numbers (reperesented on the perimeter of a polygon): $p_{n}^{k}=k(n-1)$.
(30) Polygonal numbers (represented on the closed surface of a polygon):
$p_{n}^{k}=\frac{(k-2) n^{2}-(k-4) n}{2}$.
(31) Primitive abundant numbers; a is a primitive abundant if it is abundant, but none of its proper divisors are.
(32) Primitive pseudoperfect numbers; \boldsymbol{a} is primitive pseudoperfect if it is pseudoperfect, but none of its proper divisors are.
(33) Pseudoperfect numbers; a is pseudoperfect if it is equal to the sum of some of its proper divisors (W.Sierpinski).
(34) Pseudoprime numbers to base $b ; a$ is pseudoprime to base b if a is an odd composite number for which $b^{a-1} \equiv \mathrm{I}(\bmod a)$ (C.Pomerance, J.L. Selfridge, S.Wagstaff).
(35) Pyramidal numbers: $\pi_{n}=\frac{1}{6} n(n+1)(n+2), n \in N^{*}$.
(36)Pythagorian numbers; let $n=3$ and a, b, c be integers; then one must have the relation: $a^{2}=b^{2}+c^{2}$.
(37) Quadratic residues of a fixed prime p : the nomzero number r for which the congruence $r \equiv x^{2}(\bmod p)$ has solutions.
(38) Quasi perfect numbers; a is quasi perfect if $\sigma(a)=2 a+1$.
(39) Reduced amicable numbers; we take $n=2$; two integers a, b for which $\sigma(a)=\sigma(b)=$ $a+b+1$ are called reduced amicable numbers (Walter E. Beck and Rudolph M. Najar).
(40) Stirling numbers of first case: $s(0,0)=1$, and $s(n, k)$ is the coefficient of x^{k} from the development $x(x-1) \ldots(x-n+1)$.
(41) Stirling numbers of second case: $S(0,0)=1$, and $S(n, k)$ is the coefficient of the polynom $x^{(k)}=x(x-1) \ldots(x-k+1), 1 \leq k \leq n$, from the development (which is uniquely writen):

$$
x^{n}=\sum_{k=1}^{n} S(n, k) x^{(k)} .
$$

(42) Superperfect numbers; a is superperfect if $\sigma^{2}(a)=2 a$ (D.Surynarayana).
(43) Untouchabie numbers; a is untouchable if $s(x)=1$ has no solution (Jack Alanen).
(44) U-numbers: starting from arbitrary u_{1} and u_{2} continue with those numbers which can be expressed in just one way as the sum of two distinct earlier members of the sequence (S.M.Ulam).
(45) Weird numbers; a is called weird if it is abundant but not pseudoperfect (S.J.Benkoski).

MORE NUMBER SEQUENCES

The unsolved problem No. 41 is obtained by taking $P=(1)$ and $R=(1)$.
The unsolved problem No. 42 is obtained by taking $P=(1), R=(2)$.

The unsolved problem No. 2065 is obtained by taking $p=(45), R=(45)$.

OTHER UNSOLVED PROBLEMS COMCERNING THE FUNCTION η AND USING NUMBER SEQUENCES

§7. Unsolved Diophantine Equations Concerning the Function η

2066) Let $0<k \leq 1$ be a rational number. Does the diophantine equation $\eta(n) / n=k$ always have solutions? Find all k so that this equation has an infinite number of solutions. (For example, if $k=1 / r, r \in N^{*}$, then $n=r p_{a+h}, h=1,2, \ldots$, all p_{a+h} are primes, and a is a chosen index such that $p_{a+1}>r$.)
2067) Let $\left\{a_{n}\right\}_{n \geq 0}$ be a sequence, $a_{0}=1, a_{1}=2$, and $a_{n+1}=a_{n(n)}+\eta\left(a_{n}\right)$. Are there infinitely many pairs (m, n), $m \neq n$, for which $a_{m}=a_{n}$? (For example: $a_{9}=a_{13}=16$.)
2068) Conjecture: the equation $\eta(x)=\eta(x+1)$ has no solution.

Let m, n be fixed integers. Solve the diophantine equations:
2069) $\eta(m x+n)=x$.
2070) $\eta(m x+n)=m+n x$.
2071) $\eta(m x+n)=x$!
2072) $\eta\left(x^{m}\right)=x^{n}$.
2073) $\eta(x)^{m}=\eta\left(x^{n}\right)$.
2074) $\eta(m x+n)=\eta(x)^{y}$.
2075) $\eta(x)+y=x+\eta(y), x$ and y are not primes.
2076) $\eta(x)+\eta(y)=\eta(x+y), x$ and y are not twin primes. (Generally, η is not additive.)
2077) $\eta(x+y)=\eta(x) \cdot \eta(y)$. (Generally, η is not an exponential function.)
2078) $\eta(x y)=\eta(x) \eta(y)$. (Generally, η is not a multiplicative function.)
2079) $\eta(m x+n)=x^{y}$.
2080) $\eta(x) y=x \eta(y), x$ and y are not primes.
2081) $\eta(x) / y=x / \eta(y), x$ and y are not primes. (Particularly when $y=2^{k}, k \in N$, i.e., $\eta(x) / 2^{k}$ is a dyadic rational numbers.)
2082) $\eta(x)^{y}=x^{\eta(y)}, x$ and y are not primes.
2083) $\eta(x)^{\eta(y)}=\eta\left(x^{y}\right)$.
2084) $\eta\left(x^{y}\right)-\eta\left(z^{w}\right)=1$, with $y \neq 1 \neq w$. (On Catalan's problem.)
2085) $\eta\left(x^{y}\right)=m, y \geq 2$.
2086) $\eta\left(x^{x}\right)=y^{y}$. (A trivial solution: $x=y=2$).
2087) $\eta\left(x^{y}\right)=y^{x}$. (A trivial solution: $x=y=2$).
2088) $\eta(x)=y$! (An example: $x=9, y=3$.)
2089) $\eta(m x)=m \eta(x), m \geq 2$.
2090) $m^{\eta(x)}+\eta(x)^{n}=m^{n}$.
2091) $\eta\left(x^{2}\right) / m \pm \eta\left(y^{2}\right) / n=1$.
2092) $\eta\left(x_{1}^{y_{1}}+\ldots+x_{r}^{y_{r}}\right)=\eta\left(x_{1}\right)^{y_{1}}+\ldots+\eta\left(x_{r}\right)^{y_{r}}$.
2093) $\eta\left(x_{1}!+\ldots+x_{r}!\right)=\eta\left(x_{1}\right)!+\ldots+\eta\left(x_{r}\right)!$
2094) $(x, y)=(\eta(x), \eta(y)), x$ and y are not primes.
2095) $[x, y]=[\eta(x), \eta(y)], x$ and y are not primes.

OTHER UNSOLVED DIOPHANTINE EQUATIONS CONCERNING THE FUNCTION η ONLY

§8. Unsolved Diphantine Equations Concerning the Function η in Correlation with Other Functions

Let m, n be fixed integers. Solve the diophantine equations:

$$
\text { 2096-2102) } \eta(x)=d(m x+n)
$$

$$
\eta(x)^{m}=d\left(x^{n}\right)
$$

```
\(\eta(x)+y=x+d(y)\)
\(\eta(x) \cdot y=x \cdot d(y)\)
\(\eta(x) / y=d(y) / x\)
\(\eta(x)^{s}=x^{d(y)}\)
\(\eta(x)^{y}=d(y)^{x}\)
```

2103-2221) Same equations as befor, but we substitute the function $d(x)$ with $d_{x}, p(x)$, $s(x), s^{k}(x), s^{*}(x), r_{k}(x), \pi(x), \pi(x ; m, n), \sigma_{k}(x), \sigma^{k}(x), \sigma^{*}(x), \varphi(x), \varphi^{k}(x), \bar{\phi}(x), \Omega(x), \omega(x)$ respectively.

```
2222) \(\eta(s(x, y))=s\left(\eta^{(x)}, \eta(y)\right)\).
2223) \(\eta(S(x, y))=S(\eta(x), \eta(y))\).
2224) \(\eta(\lfloor x\rfloor)=\lfloor\Gamma(x)\rfloor\).
2225; \(\eta(\lfloor x-y\rfloor)=\lfloor\beta(x, y)\rfloor\).
2226) \(\beta(\eta(\lfloor x\rfloor), y)=\beta(x, \eta(\lfloor y\rfloor))\).
2227) \(\eta(\lfloor\beta(x, y)\rfloor)=\lfloor\beta(\eta(\lfloor x\rfloor), \eta(\lfloor y\rfloor))\rfloor\).
2228) \(\mu(\eta(x))=\mu(\varphi(x))\).
2229) \(\eta(x)=\lfloor\Theta(x)]\).
2230) \(\eta(x)=\lfloor\Psi(x)\rfloor\).
2231) \(\eta(m x+n)=A_{x}^{n}=x(x-2) \ldots(x-n+1)\).
2232) \(\eta(m x+n)=A x^{m}\).
```

2233) $\eta(m x+n)=\binom{x}{n}=\frac{x!}{n!(x-n)!}$.
2234) $\eta(m x+n)=\binom{x}{m}$.
2235) $\eta(m x+n)=p_{x}=$ the x-th prime.
2236) $\eta(m x+n)=\left\lfloor 1 / B_{x}\right\rfloor$.
2237) $\eta(m x+n)=G_{x}$.
2238) $\eta(m x+n)=k_{x}=\binom{x+n-1}{n}$.
2239) $\eta(m x+n)=k_{x}^{m}$.
2240) $\eta(m x+n)=s(m, x)$.
2241) $\eta(m x+n)=s(x, n)$.
2242) $\eta(m x+n)=S(m, x)$.
```
2243) \(\eta(m x+n)=S(x, n)\).
2244) \(\eta(m x+n)=\pi_{x}\).
2245) \(\eta(m x+n)=b_{x}\).
2246) \(\eta(m x+n)=\left|E_{x}\right|\).
2247) \(\eta(m x+n)=!x\).
2248) \(\eta(x) \equiv \eta(y)(\bmod m)\).
2249) \(\eta(x y) \equiv x(\bmod y)\).
2250) \(\eta(x)(x+m)+\eta(y)(y+m)=\eta(z)(z+m)\).
2251) \(\eta(m x+n)=f_{x}\).
2252) \(\eta(m x+n)=F_{x}\).
2253) \(\eta(m x+n)=M_{x}\).
2254) \(\eta(m x+n)=c_{x}\).
2255) \(\eta(m x+n)=C_{x}\).
2256) \(\eta(m x+n)=h_{x}\).
2257) \(\eta(m x+n)=L_{x}\).
```

More unsolved diophantine equations concerning the function η in correlation with other functions.

§9. Unsolved Diophantine Equations Concerning The Function η in Composition with Other Functions

2258) $\eta(d(x))=d(\eta(x)), x$ is not prime.

2259-2275) Same equations as this, but we substitute the function $d(x)$ with $d_{x}, p(x), \ldots$, $\omega(x)$ respectively.

More unsolved diophantine equations concerning the function η in composition with other functions. (For example: $\eta(\pi(4(x)))=\varphi(\eta(\pi(x)))$, etc.)

§10. Unsolved Diophantine Inequations Concerning the Function η

Let m, n be fixed integers. Solve the following diophantine inequalities:
2276) $\eta(x) \geq \eta(y)$.
2277) is $0<\{x / \eta(x)\}<\{\eta(x) / x\}$ infinitely often?
where $\{a\}$ is the factorial part of a.
2278) $\eta(m x+n)<d(x)$.

2279-2300) Same (or similar) inequalities as this, but we substitute the function $d(x)$ with $d_{x}, p(x), \ldots, \omega(x), \Gamma(x), \beta(x, x), \mu(x), \Theta(x), \Psi(x)$, respectively.

More unsolved diophantine inequations concerning the function η in correlation (or composition, etc.) with other function. (For example: $\Theta(\eta(\lfloor x\rfloor))<\eta(\lfloor\Theta(x)\rfloor)$, etc.)

§11. Arithmetic Functions Constructed by Means of the Function η

UNSOLVED PROBLEMS CONCERNING THESE NEW FUNCTIONS

I. The function $S_{\eta}: N^{*} \rightarrow N, S_{\eta}(x)=\sum_{0<n \leq x} \eta(n)$.
2301) Is $\sum_{x \geq 2} S_{\eta}(x)^{-1}$ a convergent series?
2302) Find the smallest k for wich $\underbrace{\left(S_{n} \circ \ldots \circ S_{\eta}\right)}_{k \text { times }}(m) \geq n$, for m, n fixed integers.

2303-4602) Study S_{η}. The same (or similar) questions for S_{η} as for η.
II. The function $C_{\eta}: N^{*} \rightarrow Q, C_{\eta}(x)=\frac{1}{x}(\eta(1)+\eta(2)+\ldots+\eta(x))$ (sum of Cesaro concerning the function η).
4603) Is $\sum_{x>1} C_{n}(x)^{-1}$ a convergent series?
4604) Find the smallest k for which $\underbrace{\left(C_{\eta} \circ \ldots \circ C_{\eta}\right)}_{\mathrm{k} \text { times }}(m) \geq n$, for m, π fixed integers.

4605-6904) Study C_{η}. The same (or similar) questions for C_{η} as for η.
III. The function $E_{\eta}: N^{*} \rightarrow N, E_{\eta}(x)=\sum_{k=1}^{k_{0}} \eta^{(k)}(x)$, where $\eta^{(1)}=\eta$ and $\eta^{(k)}=\eta \circ \ldots \mathrm{c} \eta$ of k times, and k_{0} is the smallest integer k for which $\eta^{(k+1)}(x)=\eta^{(k)}(x)$.
6905) Is $\sum_{x \geq 2} E_{\eta}(x)^{-1}$ aconvergent series?
6906) Find the smallest x for which $E_{\eta}(x)>m$, where m is a fixed integer.

6907-9206) Study E_{η}. The same (or similar) questions for S_{η} as for η.
IV. The function $F_{\eta}: N \backslash\{0,1\} \rightarrow N, F_{\eta}=\sum_{\substack{0<p \leq x \\ \\ \text { p prime }}} \eta_{p}(x)$.
9207) Is $\sum_{x \geq 2} F_{\eta}(x)^{-1}$ aconvergent series?

9208-11507) Study the function F_{η}. The same (or similar) questions for F_{η} as for η.
V. The function $\alpha_{\eta}: N^{*} \rightarrow N ; \alpha_{\eta}(x)=\sum_{n=1}^{x} \beta(n)$, where $\beta(n)=\left\{\begin{array}{l}0, \text { if } \eta(n) \text { is even; } \\ 1, \text { if } \eta(n) \text { is odd. }\end{array}\right.$
11508) Let $n \in N^{*}$. Find the smallest k for which $\underbrace{\left(\alpha_{n} \circ \ldots \circ \alpha_{n}\right)}_{k \text { times }}(n)=0$.

11509-13808) Study α_{7}. The same (or similar) questions for α_{η} as for η.
VI. The function $m_{\eta}: N^{*} \rightarrow N, m_{\eta}(j)=a_{j}, 1 \leq j \leq n$, fixed integers, and $m_{\eta}(n+1)=$ $=\min _{i}\left\{\eta\left(a_{i}+a_{n-i}\right)\right\}$, etc.
13809) Is $\sum_{x \geq 1} m_{\eta}(x)^{-1}$ a convergent series?

13810-16109) Study m_{η}. The same (or similar) questions for m_{η} as for η.
VII. The function $M_{n}: N^{*} \rightarrow N$. A given finite positive integer sequence a_{1}, \ldots, a_{n} is successively extended by:
$M_{\eta}(n+1)=\max _{j}\left\{\eta\left(a_{i}+a_{n-i}\right)\right\}$, etc.
$M_{\eta}(j)=a_{j}, 1 \leq j \leq n$.
16110) Is $\sum_{x \geq 1} M_{7}(x)^{-1}$ a convergent series?

16111-18410) Study M_{η}. The same (or similar) questions for M_{η} as for η.
VIII. The function $\eta_{\min }^{-1}: N \backslash\{1\} \rightarrow N, \eta_{\min }^{-\frac{1}{2}}(x)=\min \left\{\eta^{-1}(x)\right\}$ where $\eta^{-1}(x)=$ $=\{a \in N \mid \eta(a)=x\}$. For example $\eta^{-1}(x)=\left\{2^{4}, 2^{4} \cdot 3,2^{4} \cdot 3^{2}, 3^{2} \cdot 2,3^{2} \cdot 2^{2}, 3^{2} \cdot 2^{3}\right\}$, whence $\eta_{\min }^{-1}(6)=9$.
18411) Find the smallest k for which $\underbrace{\left(\eta_{\min }^{-1} \circ \ldots \circ \eta_{\min }^{-1}\right)}(m) \geq n$.
k times
18412-20711) Study $\eta_{\text {min }}^{-\frac{1}{2}}$. The same (or similar) questions for $\eta_{\text {min }}^{-\frac{1}{2}}$ as for η.
IX. The function $\eta_{\text {card }}^{1}: N \rightarrow N, \eta_{\text {card }}^{-1}(x)=\operatorname{Card}\left\{\eta^{-1}(x)\right\}$, where $\operatorname{Card} A$ means the number of elements of the set A.
20712) Find the smallest k for which $\underbrace{\left(\eta_{\text {年 }+d}^{-1} \circ \ldots \circ \eta_{\text {card }}^{-1}\right)}_{k \text { times }}(m) \geq n$, for m, n fixed integers.

20713-23012) Study $\eta_{\text {cord }}^{-1}$. The same (or similar) questions for $\eta_{\text {card }}^{-1}$ as for η.
X. The function $d_{\eta}: N^{*} \rightarrow N, d_{\eta}(x)=|\eta(x+1)-\eta(x)|$. Let $d_{\eta}^{(k+1)}: N^{*} \rightarrow N, d_{\eta}(x)=$ $=\left|d_{\eta}^{(k)}(x+1)-d_{\eta}^{(k)}\right|$, for all $k \in N^{*}$, where $d_{\eta}^{(1)}(x)=d_{\eta}(x)$.
23013) Conjecture: $d_{\eta}^{(k)}(1)=1$ or 0 , for all $k \geq 2$. (This reminds us of Gillreath's conjecture on primes.) For example:

23014-25313) Study $d_{\eta}^{(k)}$. The same (or similar) questions for $d_{\eta}^{(k)}$ as for η.
XI. The function $\omega_{\eta}: N^{*} \rightarrow N, \omega_{\eta}(x)$ is the number of m, with $0<m \leq x$, so that $\eta(m)$ divides x. Hence, $\omega_{\pi}(x) \geq \omega(x)$, and we have equality if $x=1$ or x is a prime.
25314) Find the smallest k for which $\underbrace{\left(\omega_{\eta} \circ \ldots \circ \omega_{\eta}\right)}(x)=0$, for a fixed integers x.

25315-27614) Study ω_{η}. The same (or similar) questions for ω_{η} as for η.
XII. The function $M_{\eta}: N^{*} \rightarrow N, M_{\eta}(x)$ is the number of m, with $0<m \leq x^{k}$, so that $\eta(m)$ is a multiple of x. For example $M_{\eta}(3)=\operatorname{Card}(1,3,6,9,12,27)=6$. If p is a prone $M_{\eta}(p)=\operatorname{Card}\left\{1, a_{2}, \ldots, a_{r}\right\}$, then all $a_{i}, 2 \leq i \leq r$, are multiples of p.
27615) Let m, n be integer numbers. Find the smallest k for which $\underbrace{\left(M_{\eta} \circ \ldots \mathrm{o} M_{\eta}\right)}_{\mathrm{k} \text { times }}(m) \geq n$. 27616-29915) Study M_{η}. The same (or similar) questions for M_{η} as for η.
XIII. The function $\sigma_{\eta}: N^{*} \rightarrow N, \sigma_{\eta}(x)=\sum_{d \mid x} \eta(d)$.
$d>0$
For example $\sigma_{\eta}(18)=\eta(1)+\eta(2)+\eta(3)+\eta(6)+\eta(9)+\eta(18)=20, \sigma_{\eta}(9)=9$.
29916) Are there an infinity of nonprimes n so that $\sigma_{\eta}(n)=n$?

29917-32216) Study σ_{η}. The same (or similar) questions for σ_{η} as for η.
XIV. The function $\pi_{\eta}: N \rightarrow N, \pi_{\eta}(x)$ is the number of numbers n so that $\eta(n) \leq x$. If $p_{1}<p_{2}<\ldots<p_{k} \leq n<p_{k+1}$ is the primes sequence, and for all $i=1,2, \ldots, k$ we have $p_{i}^{a_{i}}$ divides n ! but $p_{i}^{a_{1}+1}$ does not divide n !, then:

$$
\pi_{n}(n)=\left(a_{1}+1\right) \ldots(a-k+1)
$$

32217-34516) Study π_{π}. The same (or similar) question for π_{η} as for η.
XV. The function $\varphi_{\eta}: N^{*} \rightarrow N ; \varphi_{\eta}(x)$ is the number of m, with $0<m \leq x$, having the property $(\eta(m), x)=1$.
34517) Is always true that $\varphi_{\eta}(x)<\varphi(x)$?
34518) Find x for which $\varphi(x) \geq \varphi(x)$.
34519) Find the smallest k so that $\underbrace{(x)}_{\left.k \text { 传 } \circ \ldots \circ \varphi_{\eta}\right)}=1$, for a fixed integers x.
k times
34520-36819) Study φ_{η}. The same (or similar) questions for φ_{η} as for η.

More unsolved problems concerning these 15 functions.

More new (arithmetic) functions constructed by means of the function η, and new unsolved problems concerning them.
$36820 \rightarrow \infty$. We can continue these recurring sequences of unsolved problems in number theory to infinity. Thus, we construct an infinity of more new functions: Using the functions $S_{n}, C_{n}, \ldots, \varphi_{\eta}$ construct the functions $f_{11}, f_{12}, \ldots, f_{1 n_{1}}$ (by varied combinations between $S_{\eta}, C_{n}, \ldots, \varphi_{\eta}$; for example: $S_{n}^{(i+1)}(x)=\sum_{0<n \leq x} S_{\eta}^{(i)}$ far all $x \in N^{*}, S_{\eta}^{(i)}: N^{*} \rightarrow N$ for all $i=0,1,2, \ldots$, where $S_{\eta}^{(0)}=S_{\eta}$. Or: $S C_{\eta}(x)=\frac{1}{x} \sum_{n=1}^{x} S_{\eta}(n), S C_{\eta}: N^{*} \rightarrow Q, S C_{\eta}$ being a combination between S_{η} and C_{η}; etc.); analogously by means of the functions $f_{11}, f_{12}, \ldots, f_{1 n_{1}}$ we construct the functions $f_{21}, f_{22}, \ldots, f_{2 n_{2}}$ etc. The method to obtain new functions continues to infinity. For each function we have at least 2300 unsolved problems, and we have an infinity-of thus functions. The method can be represented in the following way:

$$
\begin{gathered}
\eta \stackrel{\text { produces }}{\rightarrow} S_{\eta}, C_{\eta, \ldots,}, \varphi \rightarrow f_{11}, f_{12}, \ldots, f_{1 n_{1}} \\
f_{11}, f_{12}, \ldots, f_{1 n_{1}} \rightarrow f_{21}, f_{22}, \ldots, f_{2 n_{2}} \\
f_{21}, f_{22}, \ldots, f_{2 n_{1}} \rightarrow f_{31}, f_{32}, \ldots, f_{3 n_{3}}
\end{gathered}
$$

$$
f_{i 1}, f_{i 2}, \ldots, f_{i r_{i}} \rightarrow f_{i+1,1}, f_{i+1,2}, \ldots, f_{i+1, n_{i+1}}
$$

§12. Conclusion

With this paper the author wants to prove that we can construct infinitely many unsolved problems, especially in number theory: you "rock and roll" the numbers until you create interesting scenarios! Some problems in this paper could effect the subsequent development of mathematics.

The world is in a general crisis. Do the unsolved problems really constitute a mathematical crisis, or contrary to that, do their absence lead to an intellectual stagnation? Making will always have problems to solve, they even must again solve previously solved problems (!) For example, this paper shows that people will be more and more overwhelrned by (open) unsolved problems. [It is easier to ask than to answer.]

Here, there are proposed (un)solved problems which are enough for ever!! Suppose you solve an infinite number of problems, there will always be an infinity of problems remaining. Do not assume those proposals are trivial and non-important, rather, they are very substantial.
§13. References (books and papers which have inspired the author)
[1] Arnoux Gabriel, Arithmétique graphique. Introduction à l'étude des fonctions arithmétique, Gauthiers-Villars, Paris, 1906.
[2] Blanchard A., Initiation à la théorie analitique des nombres primiers, Dunod, Paris, 1969.
[3] Borevitch Z.I. and Shafarecitch I.R., Number Theory, Academic Press, New York, 1966.
[4] BouvierAlain et George Michel (sous la direction de Francois Le Lionnais), Dictionaire des Mathématiques, Presses Universitaires de France, Paris, 1979.
[5] Carmichael R. D., Theory of Numbers, Mathematical Monographs, No. 13, New York, Wiley, 1914.
[6] Chandrasekharan K., Introduction to Analytic Number Theory, Springer-Verlag, 1968.
[7] Davenport H., Higher Arithmetic, London, Hutchison, 1952.
[8] Dickson L. E., Introdution to the Theory of Numbers, Chicago Univ. Press, 1929.
[9] Estermann T., Introduction to Modern Prime Number Theory, Cambridge Tracts in Mathematics, No. 41, 1952.
[10] Erdös P., Problems and Results in Combinatorial Number Theory, Bordeaux, 1974.
[11] Fourrey E., Récréactions Arithmétiques, Troisì̀me Édition, Vuibert et Nony, Paris, 190.4.
[12] "Gamma" Journal, Unsolved Problems Corner, Brasov, 1985.
[19] Goodstein R. L., Recursive Number Theory. A Development of Recursive Arithmetic in a Logic-Free Equation Calculs, North-Holland Publishing Company, 1964.
[14] Grosswald Emil and Hagis Piter, Arithmetic Progressions Consisting Only of Primes, Math. Comput. 33, 1343-1352, 1979.
[15] Guy Richard K., Unsolved Problems in Number Theory, Springer-Verlag, New York, Heidelberg, Berlin, 1981.
[16] Halbertstam H. and Roth K. F.: Sequences, Oxford U.P., 1966.
[17] Hardy G. H. and Wright E. M., An Introduction to the Theory of Numbers, Clarendon Press, Oxford, Fifth Edition, 1984.
[18] Hasse H., Number Theory, Akademie-Verlag, Berlin, 1977.
[19] Landau Edmund, Elementary Number Theory, with Exercises by Paul T. Bateman and Eugene E. Kohlbecker, Chelsea, New York, 1958.
[20] Mordell L. J., Diophantine Equations, Academic Press, London, 1969.
[21] Nagell T., Introduction to Number Theory, New York, Wiley, 1951.
[22] Niven I., Irrational Numbers, Carus Math. Monographs, No. 11, Math. Assoc. of America, 1956.
[23] Ogilvy C. S., Unsolved Problems for the Amateur, Tomorrow's Math., Oxford Univ. Press, Nwe York, 1962.
[24] Ore O., Number Theory and Its History, McGraw-hill, New York, 1978.
[25] Report of Institute in the Theory of Numbers, Univ. of Colorado, Boulder, 1959.
[26] Shanks Daniel, solved and Unsolved Problems in Number Theory, Spartan, Washington, D. C., 1962.
[27] Sierpinski W., On Some Unsolved Problems of Arithmetics, Scripta Mathematica, Vol. 25, 1960.
[28] Smarandache Florentin, A Function in the Number Theory *, in Analele Univ. Timisoara, Vol. XVIII, Fasc. 1, pp. 79-88, 1980; M. R. 83c: 10008.
[29] Smarandache Florentin, Problèmes Avec et Sans ... Problémes!, Somipress, Fès, Morocco, 1983; M. R. 84k: 00003.
[30] Llam S., A Collection of Mathematical Problems, Interscience, New York, 1960.
[31] Vinogradov I. M., An Introduction to the Theory of Numbers, Translated by Helen Popova, Pergamon Press, London and New York, 1955.

Florentin Smarandache,
Department of Mathematics, N. Bălcescu College, Craiova. [Presented at the 14th American Romanian Academy Annual Convention, held in Los-Angeles, California, hosted by the University of Southern California, from April 20 to April 22, 1989. An abstract was published by Prof. Constantin Corduneanu, Department of Mathematics, University of Texas at Arlington, in "Libertas Mathematica", tomus IX, p. 175, The Grid, Arlington, Texas. Another abstract had been published in the proceedings of the short communications, International Congress of Mathematicians, Berkeley, California, 1986.j

