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AN INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS 

An algorithm is given that ascertains whether a linear equation has integer number 
solutions or not; if it does, the general integer solution is determined. 

Input 
A linear equation a1x1 + ... + anxn = b , with  ai ,b ∈Z , xi  being integer number 

unknowns, i = 1,n , and not all ai = 0 . 

Output 
Decision on the integer solution of this equation; and if the equation has solutions 

in  Z , its general solution is obtained. 

Method 
Step 1. Calculate ( )1,..., nd a a= .
Step 2. If d / b  then “the equation has integer solution”; go on to Step 3. If d / b

then “the equation does not have integer solution”; stop. 
Step 3. Consider h := 1 . If d ≠ 1 , divide the equation by d ; consider 

ai := ai / d,  i = 1,n,  b := b / d . 
Step 4. Calculate a = min

as ≠0
as  and determine an i  such that ai = a . 

Step 5. If a ≠ 1 then go to Step 7. 
Step 6. If a = 1 , then: 

(A) xi = −(a1x1 + ... + ai −1xi −1 + ai +1xi +1 + ... + anxn − b) ⋅ ai

(B) Substitute the value of xi  in the values of the other determined 
unknowns. 

(C) Substitute integer number parameters for all the variables of the 
unknown values in the right term: k1, k2 ,..., kn− 2 , and kn−1  
respectively. 

(D) Write, for your records, the general solution thus determined; stop. 
Step7. Write down all aj ,  j ≠ i  and under the form:  

aj = aiqj + rj

b = aiq + r  where qj =
aj

ai

⎡

⎣
⎢

⎤

⎦
⎥ , q =

b

ai

⎡

⎣
⎢

⎤

⎦
⎥ . 

Step 8. Write xi = −q1x1 − ...− qi −1xi −1 − qi+1xi +1 − ... − qnxn + q − th . Substitute the 
value of xi  in the values of the other determined unknowns. 

Step 9. Consider  
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a1 := r1
:

ai−1 := ri−1

ai+1 := ri+1

:

an := rn

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

and  

ai := −ai

b := r

xi := th

h := h + 1

⎧

⎨
⎪⎪

⎩
⎪
⎪

and go back to Step 4. 

Lemma 1. The previous algorithm is finite. 
Proof: 
Let’s a1x1 + ... + anxn = b  be the initial linear equation, with not all ai = 0 ; check 

for min
as ≠0

as = a1 ≠ 1  (if not, it is renumbered). Following the algorithm, once we pass 

from this initial equation to a new equation: ' ' '
1 1 2 2 ... 'n na x a x a x b+ + + = , with '

1 ia a<  for 

i = 2,n , b ' < b  and '
1 1a a= − . 

It follows that 
'

'

10
min min

ss
s saa

a a
≠≠

< . We continue similarly and after a finite number 

of steps we obtain, at Step 4, a := 1  (the actual a  is always smaller than the previous a , 
according to the previous note) and in this case the algorithm terminates.  

Lemma 2. Let the linear equation be: 
 (25)  1 1 2 2 ... n na x a x a x b+ + + = , with 10

min
s

sa
a a

≠
=  and the equation 

 (26) 1 1 2 2 ... n na t r x r x r− + + + = , with t1 = −x1 − q2x2 − ... − qnxn + q , where 

ri = ai − aiqi , i = 2,n , r = b − a1q  while qi =
ai

a
⎡
⎣⎢

⎤
⎦⎥

,
1

br
a

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
. Then x1 = x1

0 , 

x2 = x2
0 ,…, xn = xn

0  is a particular solution of equation (25) if and only if 
t1 = t1

0 = −x1 − q2x2
0 − ... − qnxn

0 + q ,  x2 ,..., xn = xn
0  is a particular solution of equation 

(26). 
Proof: 
x1 = x1

0 , x2 = x2
0 ,…, xn = xn

0 , is a particular solution of equation (25) ⇔   
a1x1

0 + a2x2
0 + ... + anxn

0 = b ⇔ a1x1
0 + (r2 + a1q2 )x2

0 + ... + (rn + a1qn )xn
0 = a1q + r ⇔   

r2x2
0 + ... + rnxn

0 − a1(−x1
0 − q2x2

0 − ... − qnxn
0 + q) = r ⇔ −a1t1

0 + r2x2
0 + ... + rnxn

0 = r ⇔
0 0 0

1 1 2 2, ,..., n nt t x x x x⇔ = = =  is a particular solution of equation (26). 

Lemma 3. 1 1 1 1...i i in n ix c k c k d− −= + + + , i = 1,n , is the general solution of equation 
(25) if and only if 

(28)  t1 = −(c11 + q2c21 + ... + qncn1)k1 − ... − (c1n−1 + q2c2n−1 + ... + qncnn−1)kn −

1 2 2( ... )n nd q d q d q− + + + + , 

1 1 1 1 1...j j jn n jx c k c k d− −= + + + ,   j = 2,n
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is a general solution for equation (26). 
 Proof: 
 t1 = t1

0 = −x1
0 − q2x2

0 − ... − qnxn
0 + q,  x2 = x2

0 ,..., xn = xn
0  is a particular solution of 

the equation (25) ⇔  0 0 0
1 1 2 2,  ,..., n nx x x x x x= = =  is a particular solution of equation (26) 

0 0
1 1 ,..., n nk k k k⇔ ∃ = ∈ = ∈Z Z  such that 

0 0 0
1 1 1 1...i i in n i ix c k c k d x− −= + + + = , i = 1,n   ⇔ ∃k1 = k1

0 ∈Z,..., kn = kn
0 ∈Z ,  

such that   
0 0 0

1 1 1 1...i i in n i ix c k c k d x− −= + + + = ,  i = 2,n ,  
and  

t1 = −(c11 + q2c21 + ... + qncn1)k
1

0 − ... − (c1n−1 + q2c2n−1 + ... + qncnn−1)k
n−1

0 −

(d1 + q2d2 + ... + qndn ) + q = −x1
0 − q2x2

0 − ... − qnxn
0 + q = t1

0
 

  
 Lemma 4.  The linear equation  
 (29) 1 1 2 2 ... n na x a x a x b+ + + =  with a1 = 1 has the general solution: 

 (30) 

 

x1 = −(a2k2 + ...+ ankn − b)a1

xi = ki ∈Z
i = 2,n

⎧

⎨
⎪

⎩
⎪

 

 Proof: 
 Let’s consider x1 = x1

0 , x2 = x2
0 ,…, xn = xn

0 , a particular solution of equation (29). 
0 0

2 2 ,  n nk x k x∃ = = , such that ( )0 0 0 0 0
1 2 2 1 1 2 2... ,   ,...,n n n nx a x a x b a x x x x x= − + + − = = = . 

 Lemma 5. Let’s consider the linear equation 1 1 2 2 ... n na x a x a x b+ + + = , with 

1
0

min
s

s
a

a a
≠

=  and 1 ,   2,i ia a q i n= = . 

 Then, the general solution of the equation is: 

 
1 2 2( ... )

2,

n n

i i

x q k q k q
x k

i n

⎧ = − + + −
⎪

= ∈⎨
⎪ =⎩

Z  

 Proof: 
 Dividing the equation by a1  the conditions of Lemma 4 are met. 
 
 Theorem of Correctness. The preceding algorithm calculates correctly the 
general solution of the linear equation 1 1 ... n na x a x b+ + = , with not all ai = 0 . 
 Proof: 
 The algorithm is finite according to Lemma 1. The correctness of steps 1, 2, and 3 
is obvious. At step 4 there is always 

0
min

s
sa

a
≠

 as not all ai = 0 . The correctness of sub-

step 6 A) results from Lemmas 4 and 5, respectively. This algorithm represents a method 
of obtaining the general solution of the initial equation by means of the general solutions 
of the linear equation obtained after the algorithm was followed several times (according 
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to Lemmas 2 and 3); from Lemma 3, it follows that to obtain the general solution of the 
initial linear equation is equivalent to calculate the general solution of an equation at step 
6 A), equation whose general solution is given in algorithm (according to Lemmas 4 and 
5). The Theorem of correctness has been fully proven. 
 
 Note. At step 4 of the algorithm we consider 

0
: min

s
sa

a a
≠

=  such that the number of 

iterations is as small as possible. The algorithm works if we consider a := ai ≠ max
s=1,n

as  

but it takes longer. The algorithm can be introduced into a computer program. 
 
 Application  
 Calculate the integer solution of the equation: 

6x1 − 12x2 − 8x3 + 22x4 = 14 . 
 
Solution 

 The previous algorithm is applied. 
 1. (6,−12,−8,22) = 2  
 2. 2 |14  therefore the solution of the equation is in  Z . 

3. h := 1;  2 ≠ 1; dividing the equation by 2 we obtain: 

3x1 = 6x2 − 4x3 + 11x4 = 7 . 

 4. { }: min 3 ,  6 ,  4 ,  11 3,  1a i= − − = =  

 5. a ≠ 1  
 7. 6 3 ( 2) 0− = ⋅ − +  
  4 3 ( 2) 2− = ⋅ − +  
   11 3 3 2= ⋅ +  
    7 3 2 1= ⋅ +  
 8. x1 = 2x2 + 2x3 − 3x4 + 2 − t1  
 9. 

      

a2 := 0         a1 := −3

a3 := 2         b := 1

a4 := 2         x1 := t1

                    h := 2

 

 4. We have a new equation: 
  −3t1 − 0 ⋅ x2 + 2x3 + 2x4 = 1 

  { }: min 3 , 2 , 2a = −  and 

  i = 3  
 5. a ≠ 1  
 7. −3 = 2 ⋅ (−2) + 1 
      0 = 2 ⋅ 0 + 0  
      2 = 2 ⋅1+ 0  
      1 = 2 ⋅ 0 + 0  
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8. x3 = 2t1 + 0 ⋅ x2 − x4 + 0 − t2 . Substituting the value of x3  in the value

determined for x1  we obtain: 1 2 4 1 22 5 3 2 2x x x t t= − + − +
9. a1 := 1 a3 := −2  

a2 := 0 b := 1 
a4 := 0 x3 := t2

h := 3  
4. We have obtained the equation:

2 2 2 41 0 2 0 1t x t x⋅ + ⋅ − ⋅ + ⋅ = , a = 1 , and i = 1

6. (A) t1 = −(0 ⋅ x2 − 2t2 + 0 ⋅ x4 − 1) ⋅1 = 2t2 + 1
(B) Substituting the value of t1  in the values of x1  and x3  previously

determined, we obtain:  
x1 = 2x2 − 5x4 + 4t2 + 5  and  
x3 = −x4 + 3t2 + 2  

    (C) x2 := k1 , x4 := k2 ,  t2 := k3 ,   k1, k2 , k3 ∈Z  
(D)  The general solution of the initial equation is: 

x1 = 2k1 − 5k2 + 4k3 + 5  
x2 = k1  
x3 = −k2 + 3k3 + 2
x4 = k2

k1, k2 , k3  are parameters  ∈Z
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