FLORENTIN SMARANDACHE Another Integer Algorithm To Solve Linear Equations (Using Congruences)

In Florentin Smarandache: "Collected Papers", vol. I (second edition). Ann Arbor (USA): InfoLearnQuest, 2007.

ANOTHER INTEGER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCES)

In this section is presented a new integer number algorithm for linear equation. This algorithm is more "rapid" than W. Sierpinski's presented in [1] in the sense that it reaches the general solution after a smaller number of iterations. Its correctness will be thoroughly demonstrated.

Another Integer Algorithm.

Let's us consider the equation (1); (the case $a_{i}, b \in \mathbb{Q}, i=\overline{1, n}$ is reduced to the case (1) by reducing to the same denominator and eliminating the denominators). Let $d=\left(a_{1}, \ldots, a_{n}\right)$. If $d \mid b$ then the equation does not have integer solutions, while if $d \nmid b$ the equation has integer solutions (according to a well-known theorem from the number theory).

If the equation has solutions and $d \neq$ we divide the equation by d. Then $d=1$ (we do not make any restriction if we consider the maximal co-divisor positive).

Also,
(a) If all a_{i} the equation is trivial; it has the general integer solution $x_{i}=k_{i} \in \mathbb{Z}, i=\overline{1, n}$, when $b=0$ (the only case when the general solution is n-times undetermined) and does not have solution when $b \neq 0$.
(b) If $\exists i, 1 \leq i \leq n$ such that $a_{i}= \pm 1$ then the general integer solution is:

$$
x_{i}=-a_{i}\left(\sum_{\substack{j=1 \\ j \neq i}}^{n} a_{j} k_{j}-b\right) \text { and } x_{s}=k_{s} \in \mathbb{Z}, s \in\{1, \ldots, n\} \backslash\{i\}
$$

The proof of this assertion was given in [4]. All these cases are trivial, therefore we will leave them aside. The following algorithm can be written:

Input

A linear equation:

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} x_{i}=b, a_{i}, b \in \mathbb{Z}, \quad a_{i} \neq \pm 1, i=\overline{1, n} \tag{2}
\end{equation*}
$$

with not all $a_{i}=0$ and $\left(a_{1}, \ldots, a_{n}\right)=1$.

Output

The integer general solution of the equation.

Method

1. $h:=1, p:=1$
2. Calculate $\min _{1 \leq i, j \leq n}\left\{|r|, r \equiv a_{i}\left(\bmod a_{j}\right),|r|<\left|a_{j}\right|\right\}$ and determine r and the pair (i, j) for which this minimum can be obtained (when there are more possibilities we have to choose one of them).
3. If $|r| \neq$ go to step 4.

If $|r|=1$, then

$$
\left\{\begin{array}{l}
x_{i}:=r\left(-a_{j} t_{h}-\sum_{\substack{s=1 \\
s \notin\{i, j\}}}^{n} a_{s} x_{s}+b\right) \\
x_{j}:=r\left(a_{i} t_{h}+\frac{a_{i}-r}{a_{j}} \cdot \sum_{\substack{s=1 \\
s \notin\{i, j\}}}^{n} a_{s} x_{s}+\frac{r-a_{i}}{a_{j}} b\right)
\end{array}\right.
$$

(A) Substitute the values thus determined of these unknowns in all the statements $(p), p=1,2, \ldots$ (if possible).
(B) From the last relation (p) obtained in the algorithm substitute in all relations: $(\bar{p}-1),(\bar{p}-2), \ldots,(1)$
(C) Every statement, starting in order from $(\bar{p}-1)$ should be applied the same procedure as in (B): then $(\bar{p}-2), \ldots,(3)$ respectively.
(D) Write the values of the unknowns $x_{i}, i=\overline{1, n}$, from the initial equation (writing the corresponding integer number parameters from the right term of these unknowns with $\left.k_{1}, \ldots, k_{n-1}\right)$, STOP.
4. Write the statement (p): $x_{j}=t_{h}-\frac{a_{i}-r}{a_{j}} x_{i}$
5. Assign $\quad x_{j}:=t_{h} \quad h:=h+1$
$a_{i}:=r \quad p:=p+1$
The other coefficients and variables remain unchanged go back to step 2 .

The Correctness of the Algorithm

Let us consider linear equation (2). Under these conditions, the following properties exist:

Lemma 1. The set $M=\left\{|r|, r \equiv a_{i}\left(\bmod a_{j}\right), 0<|r|<\left|a_{j}\right|\right\}$ has a minimum.
Proof:
Obviously $M \subset \mathbb{N}^{*}$ and M is finite because the equation has a finite number of coefficients: n, and considering all the possible combinations of these, by twos, there is the maximum $A R_{n}^{2}$ (arranged with repetition) $=n^{2}$ elements.

Let us show, by reductio ad absurdum, that $M \neq \emptyset$.
$M \neq \emptyset \Leftrightarrow a_{i} \equiv 0\left(\bmod a_{j}\right) \forall i, j=\overline{1, n}$. Hence $a_{j} \equiv 0\left(\bmod a_{i}\right) \forall i, j=\overline{1, n}$. Or this is possible only when $\left|a_{i}\right|=\left|a_{j}\right|, \forall i, j=\overline{1, n}$, which is equivalent to
$\left(a_{1}, . ., a_{n}\right)=a_{i}, \forall i \in \overline{1, n}$. But $\left(a_{1}, . ., a_{n}\right)=1$ are a restriction from the assumption. It follows that $\left|a_{i}\right|=\overline{1, n}, \forall i \in \overline{1, n}$ a fact which contradicts the other restrictions of the assumption.
$M \neq 0$ and finite, it follows that M has a minimum.
Lemma 2. If $|r|=\min _{1 \leq i, j \leq n} M$, then $|r|<\left|a_{i}\right|, \forall i \in \overline{1, n}$.
Proof:
We assume conversely, that $\exists i_{0}, 1 \leq i_{0} \leq n$ such that $|r| \geq\left|a_{i_{0}}\right|$.
Then $|r| \geq \min _{1 \leq j \leq n}\left\{\left|a_{j}\right|\right\}=\left|a_{j_{0}}\right| \neq 1,1 \leq j_{0} \leq n$. Let $a_{p_{0}}, 1 \leq p_{0} \leq n$, such that $\left|a_{p_{0}}\right|>\left|a_{j_{0}}\right|$ and $a_{p_{0}}$ is not divided by a_{j}^{0}.

There is a coefficient in the equation, $\left|a_{j_{0}}\right|$ which is the minimum and the coefficients are not equal among themselves (conversely, it would mean that $\left(a_{1}, . ., a_{n}\right)=a_{1}= \pm 1$ which is against the hypothesis and, again, of the coefficients whose absolute value is greater that $\left|a_{i_{0}}\right|$ not all can be divided by $a_{j_{0}}$ (conversely, it would similarly result in $\left(a_{1}, . ., a_{n}\right)=a_{j_{0}} \neq \pm 1$.

We write $\left[a_{p_{0}} / a_{j_{0}}\right]=q_{0} \in \mathbb{Z}$ (integer portion), and $r=a_{p_{0}}-q_{0} a_{j_{0}} \in \mathbb{Z}$. We have $a_{p_{0}} \equiv r_{0}\left(\bmod a_{j_{0}}\right)$ and $0<\left|r_{0}\right|<\left|a_{j_{0}}\right|<\left|a_{i_{0}}\right| \leq|r|$. Thus, we have found an r_{0} which $\left|r_{0}\right|<|r|$ contradicts the definition of minimum given to $|r|$.

Thus $|r|<\left|a_{i}\right|, \forall i \in \overline{1, n}$.
Lemma 3. If $|r|=\min M=1$ for the pair of indices (i, j), then:

$$
\left\{\begin{array}{l}
x_{i}=r\left(-a_{j} t_{h}-\sum_{\substack{s=1 \\
s \notin i, j\}}}^{n} a_{s} k_{s}+b\right) \\
x_{j}=r\left(a_{i} t_{h}+\frac{a_{i}-r}{a_{j}} \cdot \sum_{\substack{s=1 \\
s \notin i, j\}}}^{n} a_{s} k_{s}+\frac{r-a_{i}}{a_{j}} b\right) \\
x_{s}=k_{s} \in \mathbb{Z}, s \in\{1, \ldots, n\} \backslash\{i, j\}
\end{array}\right.
$$

is the general integer solution of equation (2).
Proof:

Let $x_{e}=x_{e}^{0}, e=\overline{1, n}$, be a particular integer solution of equation (2). Then $\exists k_{s}=x_{s}^{0} \in \mathbb{Z}, s \in\{1, \ldots, n\} \backslash\{i, j\}$ and $t_{h}=x_{j}^{0}+\frac{a_{i}-r}{a_{j}} x_{i}^{0} \in \mathbb{Z}$ (because $a_{i}-r=M a_{j}$) such that:

$$
\begin{aligned}
& x_{i}=r-a_{j}\left(x_{j}^{0}+\frac{a_{i}-r}{a_{j}} x_{i}\right)-\sum_{\substack{s=1 \\
s \notin\{i, j\}}}^{n} a_{s} x_{s}^{0}+b=x_{i}^{0} \\
& x_{j}=r-a_{j}\left(x_{j}^{0}+\frac{a_{i}-r}{a_{j}} x_{i}^{0}\right)+\frac{a_{i}-r}{a_{j}}-\sum_{\substack{s=1 \\
s \notin i, j\}}}^{n} a_{s} x_{s}^{0}+\frac{r-a_{i}}{a_{j}} b=x_{i}^{0}
\end{aligned}
$$

and $x_{s}=k_{s}=x_{s}^{0}, s \in\{1, \ldots, n\} \backslash\{i, j\}$.
Lemma 4. Let $|r| \neq$ and (i, j) be the pair of indices for which this minimum can be obtained. Again, let's consider the system of linear equations:

$$
\left\{\begin{array}{l}
a_{j} t_{h}+r x_{i}+\sum_{\substack{s=1 \\
s \notin i, j\}}}^{n} a_{s} x_{s}=b \tag{3}\\
t_{h}=x_{j}+\frac{a_{i}-r}{a_{j}} x_{i}
\end{array}\right.
$$

Then $x_{e}=x_{e}^{0}, e=\overline{1, n}$ is a particular integer solution for (2) if and only if $x_{e}=x_{e}^{0}$, $e \in\{1, \ldots, n\} \backslash\{j\}$ and $t_{h}=t_{h}^{0}=x_{j}^{0}+\frac{a_{i}-r}{a_{j}} x_{i}$ is the particular integer solution of (3).

Proof:
$x_{e}=x_{e}^{0}, e=\overline{1, n}$ is a particular solution for (2) if and only if

$$
\begin{aligned}
& \sum_{e=1}^{n} a_{e} x_{e}^{0}=b \Leftrightarrow \sum_{\substack{s=1 \\
s \notin i, j\}}}^{n} a_{s} x_{s}^{0}+a_{j}\left(x_{j}^{0}+\frac{a_{i}-r}{a_{j}} x_{i}^{0}\right)+r x_{i}^{0}=b \Leftrightarrow \\
& \Leftrightarrow a_{j} t_{h}^{0}+r x_{i}^{0}+\sum_{\substack{s=1 \\
s \notin\{i, j\}}}^{n} a_{s} x_{s}^{0}=b \quad \text { and } \quad t_{h}^{0}=x_{j}^{0}+\frac{a_{i}-r}{a_{j}} x_{i}^{0} \in \mathbb{Z} \quad \Leftrightarrow x_{e}=x_{e}^{0},
\end{aligned}
$$

$e \in\{1, \ldots, n\} \backslash\{j\}$ and $t_{h}=t_{h}^{0}$ is a particular integer solution for (3).

Lemma 5. The previous algorithm is finite.
Proof:
When $|r|=1$ the algorithm stops at step 3 . We will discuss the case when $|r| \neq 1$. According to the definition of $r,|r| \in \mathbb{N}^{*}$. We will show that the row of $r-s$ successively obtained by following the algorithm several times is decreasing with cycle, and each cycle is not equal to the previous, by 1 . Let r_{1} be
the first obtained by following the algorithm one time. $\left|r_{1}\right| \neq 1$ then go to step 4, and then step 5. According to lemma 2, $\left|r_{1}\right|<\left|a_{i}\right|, \forall i=\overline{1, n}$.

Now we shall follow the algorithm a second time, but this time for an equation in which r_{1} (according to step 5) is substituted by a_{i}. Again, according to lemma 2, the new $|r|$ written $\left|r_{2}\right|$ will have the propriety: $\left|r_{2}\right|<\left|r_{1}\right|$. We will get to $|r|=1$ because $|r| \geq 1$ and $|r|<\infty$, and if $|r| \neq 1$, following the algorithm once again we get $|r|<\left|r_{1}\right|$ and so on. Hence, the algorithm has a finite number of repetitions.

Theorem of Correctness. The previous algorithm calculates the general solution of the linear equation correctly (2).

Proof:
According to lemma 5 the algorithm is finite. From lemma 1 it follows that the set M has a minimum, hence step 2 of the algorithm has meaning. When $|r|=1$ it was shown in lemma 3 that step 3 of the algorithm calculates the general integer solution of the respective equation correctly the equation that appears at step 3). In lemma 4 it is shown that if $|r| \neq 1$ the substitutions steps 4 and 5 introduced in the initial equation, the general integer solution remains unchanged. That is, we pass from the initial equation to a linear system having the same general solution as the initial equation. The variable h is a counter of the newly introduced variables, which are used to successively decompose the system in systems of two linear equations. The variable p is a counter of the substitutions of variables (the relations, at a given moment between certain variables).

When the initial equation was decomposed to $|r|=1$, we had to proceed in the reverse way, i.e. to compose its general integer solution. This reverse way is directed by the sub-steps 3(A), 3(B) and 3(C). The sub-step 3(D) has only an aesthetic role, i.e., to have the general solution under the form: $x_{i}=f_{i}\left(k_{1}, \ldots, k_{n-1}\right)$, $i=\overline{1, n}, f_{i}$ being linear functions with integer number of coefficients. This "if possible" shows that substitutions are not always possible. But when they are we must make all possible substitutions.

Note 1. The previous algorithm can be easily introduced into a computer program.

Note 2. The previous algorithm is more "rapid" than that of W. Sierpinski's [1], i.e., the general integer solution is reached after a smaller number of iterations (or, at least, the same) for any linear equation (2).

In the first place, both methods aim at obtaining the coefficient ± 1 for at least one unknown variable. While Sierpinski started only by chance, decomposing the greatest coefficient in the module (writing it under the form of a sum between a multiple of the following smaller coefficient (in the module) and the rest), in our algorithm this decomposition is not accidental but always seeks the smallest $|r|$
and also choose the coefficients a_{i} and a_{j} for which this minimum is achieved. That is, we test from the beginning the shortest way to the general integer solution. Sierpinski does not attempt to find the shortest way; he knows that his method will take him to the general integer solution of the equation and is not interested in how long it will take. However, when an algorithm is introduced into a computer program it is preferable that the process time should be as short as possible.

Example 1.

Let us solve in \mathbb{Z}^{3} the equation $17 x-7 y+10 z=-12$.
We apply the former algorithm.

1. $h=1, p=1$
2. $r=3, i=3, j=2$
3. $|3| \neq 1$ go on to step 4 .
4. (1) $y=t_{1}-\frac{10-3}{-7} \cdot z=t_{1}+z$
5. Assign

$$
\begin{array}{lc}
y:=t_{1} & h:=2 \\
a_{3}:=3 & p:=2
\end{array}
$$

with the other coefficients and variables remaining unchanged, go back to step 2.
2. $r=-1, i=1, j=3$
3. $|-1|=1$
$x=-1\left(-3 t_{2}-\left(-7 t_{1}\right)-12\right)=3 t_{2}-7 t_{1}-12$
$z=-1\left(17 t_{2}+\left(-7 t_{1}\right) \cdot \frac{17-(-1)}{3}+\frac{-1-17}{3}(-12)\right)=17 t_{2}+42 t_{1}-72$
(A) We substitute the values of x and z thus determined into the only statement (p) we have:

$$
\begin{equation*}
y=t_{1}+z=--17 t_{2}+43 t_{1}-72 \tag{1}
\end{equation*}
$$

(B) The substitution is not possible.
(C) The substitution is not possible.
(D) The general integer solution of the equation is:

$$
\left\{\begin{array}{l}
x=3 k_{1}-7 k_{2}+12 \\
y=-17 k_{1}+43 k_{2}-72 \\
z=-17 k_{1}+42 k_{2}-72 ; \quad k_{1}, k_{2} \in \mathbb{Z}
\end{array}\right.
$$

REFERENCES:

[1] Sierpinski, W, - Ce ştim şi ce nu ştim despre numerele prime? - Editura Stiințifică, Bucharest, 1966.
[2] Creangă, I., Cazacu, C., Mihuț, P., Opaiț, Gh., Corina Reisher Introducere în teoria numerelor, Ed. Did. şi Ped., Bucharest, 1965.
[3] Popovici, C. P. - Aritmetica şi teoria numerelor, Ed. Did. şi Ped., Bucharest, 1963.
[4] Smarandache, Florentin - Un algoritm de rezolvare în numere întregi a ecuațiilor liniare.

