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ANOTHER INTEGER ALGORITHM TO SOLVE LINEAR EQUATIONS 
(USING CONGRUENCES) 

In this section is presented a new integer number algorithm for linear equation. 
This algorithm is more “rapid” than W. Sierpinski’s presented in [1] in the sense that it 
reaches the general solution after a smaller number of iterations. Its correctness will be 
thoroughly demonstrated. 

Another Integer Algorithm. 
Let’s us consider the equation (1); (the case  ai ,b ∈Q,  i = 1,n  is reduced to the 

case (1) by reducing to the same denominator and eliminating the denominators). Let 
d = (a1,...,an ) . If d | b  then the equation does not have integer solutions, while if  |d b/  
the equation has integer solutions (according to a well-known theorem from the number 
theory).  

If the equation has solutions and d ≠  we divide the equation by d . Then d = 1  
(we do not make any restriction if we consider the maximal co-divisor positive). 
 Also, 

(a) If all ai  the equation is trivial; it has the general integer solution 
xi = ki ∈Z,  i = 1,n , when b = 0  (the only case when the general solution is 
n -times undetermined) and does not have solution whenb ≠ 0 . 

(b) If ∃i,  1 ≤ i ≤ n  such that ai = ±1 then the general integer solution is: 

xi = −ai ajk j − b
j =1
j ≠ i

n

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 and  { } { },  1,..., \s sx k s n i= ∈ ∈

The proof of this assertion was given in [4]. All these cases are trivial, therefore 
we will leave them aside. The following algorithm can be written: 

Input  
A linear equation:  

(2)  ai
i=1

n

∑ xi = b,  ai ,b ∈Z,   ai ≠ ±1,  i = 1,n ,  

with not all ai = 0  and (a1,...,an ) = 1. 

Output 
The integer general solution of the equation.  

Method 
1. h := 1,  p := 1

2. Calculate { }
1 ,
min ,  (mod ),  i j ji j n

r r a a r a
≤ ≤

≡ <  and determine r  and the pair 

(i, j)  for which this minimum can be obtained (when there are more possibilities we have 
to choose one of them). 
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3. If r ≠  go to step 4.
If r = 1 , then

{ }

{ }

   1
,

   1
,

:

:

n

i j h s s
s

s i j

n
i i

j i h s s
sj j

s i j

x r a t a x b

a r r ax r a t a x b
a a

=
∉

=
∉

⎧ ⎛ ⎞
⎪ ⎜ ⎟= − − +⎪ ⎜ ⎟

⎜ ⎟⎪⎪ ⎝ ⎠
⎨

⎛ ⎞⎪ − −⎜ ⎟⎪ = + ⋅ +⎜ ⎟⎪ ⎜ ⎟⎪ ⎝ ⎠⎩

∑

∑

(A) Substitute the values thus determined of these unknowns in all the 
statements (p), p = 1,2,... (if possible). 

(B) From the last relation (p)  obtained in the algorithm substitute in all 
relations: p − 1( ), p − 2( ),...,(1)  

(C) Every statement, starting in order from p − 1( )  should be applied the 
same procedure as in (B): then p − 2( ),...,(3)  respectively. 

(D) Write the values of the unknowns xi ,  i = 1,n , from the initial 
equation (writing the corresponding integer number parameters from 
the right term of these unknowns with k1,..., kn−1 ), STOP. 

4. Write the statement (p) : xj = th −
ai − r

aj

xi

5. Assign x j := th  h := h + 1  
 ai := r p := p + 1  

The other coefficients and variables remain unchanged go back to step 2. 

The Correctness of the Algorithm 

Let us consider linear equation (2). Under these conditions, the following 
properties exist: 

Lemma 1. The set { } ,  (mod ),  0<i j jM r r a a r a= ≡ <  has a minimum. 

Proof:  
 Obviously  M ⊂ N*  and M  is finite because the equation has a finite number of 
coefficients: n , and considering all the possible combinations of these, by twos, there is 
the maximum ARn

2  (arranged with repetition) = n2  elements. 
Let us show, by reductio ad absurdum, that  M ≠ Ø . 
M ≠ Ø  ⇔  ai ≡ 0(mod aj )  ∀i,  j = 1,n . Hence aj ≡ 0(mod ai )  ∀i,  j = 1,n . Or this 

is possible only when ai = aj ,  ∀i,  j = 1,n , which is equivalent to 
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(a1,..,an ) = ai ,  ∀i ∈1,n . But (a1,..,an ) = 1  are a restriction from the assumption. It 
follows that ai = 1,n,  ∀i ∈1,n  a fact which contradicts the other restrictions of the 
assumption. 

M ≠ 0  and finite, it follows that M has a minimum. 

Lemma 2. If r = min
1≤i, j ≤n

M , then r < ai ,  ∀i ∈1,n . 

Proof: 
We assume conversely, that ∃i0 ,  1 ≤ i0 ≤ n  such that r ≥ ai0

. 

Then { } 01
min  1j jj n

r a a
≤ ≤

≥ = ≠ ,  1 ≤ j0 ≤ n . Let ap0
,  1 ≤ p0 ≤ n , such that ap0

> aj0
 and 

ap0
 is not divided by aj

0 . 

There is a coefficient in the equation, aj0
 which is the minimum and the coefficients 

are not equal among themselves (conversely, it would mean that (a1,..,an ) = a1 = ±1  
which is against the hypothesis and, again, of the coefficients whose absolute value is 
greater that aij0

 not all can be divided by aj0
(conversely, it would similarly result in 

(a1,..,an ) = aj0
≠ ±1. 

We write  ap0
/ aj0

⎡⎣ ⎤⎦ = q0 ∈Z  (integer portion), and  r = ap0
− q0aj0

∈Z . We have

ap0
≡ r0 (mod aj0

)  and 0 < r0 < aj0
< ai0

≤ r . Thus, we have found an r0  which 

r0 < r  contradicts the definition of minimum given to r . 

Thus r < ai , ∀i ∈1,n . 

Lemma 3. If r = min M = 1 for the pair of indices (i, j) , then: 

{ }

{ }

{ } { }

   1
,

   1
,

,  1,..., \ ,

n

i j h s s
s

s i j

n
i i

j i h s s
sj j

s i j

s s

x r a t a k b

a r r ax r a t a k b
a a

x k s n i j

=
∉

=
∉

⎧ ⎛ ⎞
⎪ ⎜ ⎟= − − +⎪ ⎜ ⎟

⎜ ⎟⎪ ⎝ ⎠⎪
⎛ ⎞⎪

− −⎪ ⎜ ⎟= + ⋅ +⎨ ⎜ ⎟
⎪ ⎜ ⎟

⎝ ⎠⎪
⎪ = ∈ ∈
⎪
⎪
⎪⎩

∑

∑

Z

is the general integer solution of equation (2). 
Proof: 
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 Let xe = xe
0 ,  e = 1,n , be a particular integer solution of  equation (2). Then 

 ∃ks = xs
0 ∈Z,  s ∈ 1,...,n{ }\ i, j{ } and 

 
th = x j

0 +
ai − r

aj

xi
0 ∈Z  (because ai − r = Maj ) such 

that:   

{ }

0 0 0

   1
,

n
i

i j j i s s i
sj

s i j

a rx r a x x a x b x
a =

∉

⎛ ⎞−
= − + − + =⎜ ⎟⎜ ⎟

⎝ ⎠
∑  

 
{ }

0 0 0 0

   1
,

n
i i i

j j j i s s i
sj j j

s i j

a r a r r ax r a x x a x b x
a a a=

∉

⎛ ⎞− − −
= − + + − + =⎜ ⎟⎜ ⎟

⎝ ⎠
∑  

and { } { }0 ,  1,..., \ ,s s sx k x s n i j= = ∈ . 
 
 Lemma 4. Let r ≠  and i, j( ) be the pair of indices for which this minimum can 
be obtained. Again, let’s consider the system of linear equations: 
 

(3) { }
   1

,

n

j h i s s
s

s i j

i
h j i

j

a t rx a x b

a rt x x
a

=
∉

⎧ + + =⎪
⎪
⎨

−⎪ = +⎪
⎩

∑
 

 
Then xe = xe

0 ,  e = 1,n  is a particular integer solution for (2) if and only if xe = xe
0 , 

{ } { }1,..., \e n j∈  and th = th
0 = xj

0 +
ai − r

aj

xi  is the particular integer solution of (3). 

Proof: 
xe = xe

0 ,  e = 1,n  is a particular solution for (2) if and only if  

 
{ }

0 0 0 0 0

1    1
,

n n
i

e e s s j j i i
e s j

s i j

a ra x b a x a x x rx b
a= =

∉

⎛ ⎞−
= ⇔ + + + = ⇔⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  

{ }

0 0 0

   1
,

n

j h i s s
s

s i j

a t rx a x b
=

∉

⇔ + + =∑  and 
 
th

0 = xj
0 +

ai − r

aj

xi
0 ∈Z  ⇔ xe = xe

0 , 

{ } { }1,..., \e n j∈  and th = th
0  is a particular integer solution for (3). 

 
 Lemma 5.  The previous algorithm is finite. 
 Proof: 
 When r = 1  the algorithm stops at step 3. We will discuss the case when 
r ≠ 1 . According to the definition of  r,  r ∈N* . We will show that the row of 
r − s  successively obtained by following the algorithm several times is 
decreasing with cycle, and each cycle is not equal to the previous, by 1. Let r1  be 
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the first obtained by following the algorithm one time. r1 ≠ 1  then go to step 4, 

and then step 5. According to lemma 2, r1 < ai ,  ∀i = 1,n .  
Now we shall follow the algorithm a second time, but this time for an 

equation in which r1  (according to step 5) is substituted by ai . Again, according 
to lemma 2, the new r  written r2  will have the propriety: r2 < r1 . We will get 
to r = 1  because r ≥ 1  and r < ∞ , and if r ≠ 1 , following the algorithm once 
again we get r < r1  and so on. Hence, the algorithm has a finite number of 
repetitions. 

Theorem of Correctness. The previous algorithm calculates the general 
solution of the linear equation correctly (2). 

Proof: 
According to lemma 5 the algorithm is finite. From lemma 1 it follows 

that the set M has a minimum, hence step 2 of the algorithm has meaning. When 
r = 1  it was shown in lemma 3 that step 3 of the algorithm calculates the general 

integer solution of the respective equation correctly the equation that appears at 
step 3). In lemma 4 it is shown that if r ≠ 1 the substitutions steps 4 and 5 
introduced in the initial equation, the general integer solution remains unchanged. 
That is, we pass from the initial equation to a linear system having the same 
general solution as the initial equation. The variable h  is a counter of the newly 
introduced variables, which are used to successively decompose the system in 
systems of two linear equations. The variable p is a counter of the substitutions of 
variables (the relations, at a given moment between certain variables). 

When the initial equation was decomposed to r = 1 , we had to proceed in 
the reverse way, i.e. to compose its general integer solution. This reverse way is 
directed by the sub-steps 3(A), 3(B) and 3(C). The sub-step 3(D) has only an 
aesthetic role, i.e., to have the general solution under the form: xi = fi (k1 ,...,kn−1) , 
i = 1,n , fi  being linear functions with integer number of coefficients. This “if 
possible” shows that substitutions are not always possible. But when they are we 
must make all possible substitutions. 

Note 1. The previous algorithm can be easily introduced into a computer 
program. 

 Note 2. The previous algorithm is more “rapid” than that of W. 
Sierpinski’s [1], i.e., the general integer solution is reached after a smaller number 
of iterations (or, at least, the same) for any linear equation (2).  

In the first place, both methods aim at obtaining the coefficient ±1  for at least 
one unknown variable. While Sierpinski started only by chance, decomposing the 
greatest coefficient in the module (writing it under the form of a sum between a 
multiple of the following smaller coefficient (in the module) and the rest), in our 
algorithm this decomposition is not accidental but always seeks the smallest r  
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and also choose the coefficients ai  and aj  for which this minimum is achieved. 
That is, we test from the beginning the shortest way to the general integer 
solution. Sierpinski does not attempt to find the shortest way; he knows that his 
method will take him to the general integer solution of the equation and is not 
interested in how long it will take. However, when an algorithm is introduced into 
a computer program it is preferable that the process time should be as short as 
possible. 

Example 1. 
Let us solve in  Z3  the equation 17x − 7y + 10z = −12 . 
We apply the former algorithm. 
1. h = 1, p = 1
2. r = 3,  i = 3,  j = 2

3. 3 ≠ 1  go on to step 4.

4. (1) y = t1 −
10 − 3

−7
⋅ z = t1 + z  

5. Assign
1

3

:        : 2
: 3     : 2

y t h
a p

= =
= =

with the other coefficients and variables remaining unchanged, go back to  
step 2. 
2. 1,  1,  3r i j= − = =
3. −1 = 1

x = −1(−3t2 − (−7t1) − 12) = 3t2 − 7t1 − 12

z = −1 17t2 + (−7t1) ⋅
17 − (−1)

3
+

−1 − 17

3
(−12)

⎛
⎝⎜

⎞
⎠⎟

= 17t2 + 42t1 − 72

(A) We substitute the values of x  and z  thus determined into the only 
statement (p)  we have: 
(1) 1 2 117 43 72y t z t t= + = − − + −

(B) The substitution is not possible. 
(C) The substitution is not possible. 
(D) The general integer solution of the equation is: 

 

x = 3k1 − 7k2 + 12

y = −17k1 + 43k2 − 72

z = −17k1 + 42k2 − 72;       k1, k2 ∈Z

⎧

⎨
⎪

⎩
⎪
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