Apollonius's Circle of Second Rank

In Ion Patrascu, Florentin Smarandache: "Complements to Classic Topics of Circles Geometry". Brussels
(Belgium): Pons Editions, 2016

This article highlights some properties of Apollonius's circle of second rank in connection with the adjoint circles and the second Brocard's triangle.

$1^{\text {st }}$ Definition.

It is called Apollonius's circle of second rank relative to the vertex A of the triangle $A B C$ the circle constructed on the segment determined on the simedians' feet from A on $B C$ as diameter.

$1^{\text {st }}$ Theorem.

The Apollonius's circle of second rank relative to the vertex A of the triangle $A B C$ intersect the circumscribed circle of the triangle $A B C$ in two points belonging respectively to the cevian of third rank (antibisector's isogonal) and to its external cevian.

The theorem's proof follows from the theorem relative to the Apollonius's circle of $k^{\text {th }}$ rank (see [1]).

$1^{\text {st }}$ Proposition.

The Apollonius's circle of second rank relative to the vertex A of the triangle $A B C$ intersects the circumscribed circle in two points Q and P (Q on the same side of $B C$ as A). Then, ($Q S$ is a bisector in the triangle $Q B C, \mathrm{~S}$ is the simedian's foot from A of the triangle $A B C$.

Proof.

Q belongs to the Apollonius's circle of second rank, therefore:

$$
\begin{equation*}
\frac{Q B}{Q C}=\left(\frac{A B}{A C}\right)^{2} . \tag{1}
\end{equation*}
$$

Figure 1.
On the other hand, S being the simedian's foot, we have:

$$
\begin{equation*}
\frac{S B}{S C}=\left(\frac{A B}{A C}\right)^{2} \tag{2}
\end{equation*}
$$

From relations (1) and (2), we note that $\frac{Q B}{Q C}=\frac{S B}{S C}$,
a relation showing that $Q S$ is bisector in the triangle $Q B C$.

Remarks.

1. The Apollonius's circle of second relative to the vertex A of the triangle $A B C$ (see Figure 1) is an Apollonius's circle for the triangle $Q B C$. Indeed, we proved that $Q S$ is an internal bisector in the triangle $Q B C$, and since S^{\prime}, the external simedian's foot of the triangle $A B C$, belongs to the Apollonius's Circle of second rank, we have $m\left(\Varangle S^{\prime} Q S\right)=90^{\circ}$, therefore $Q S^{\prime}$ is an external bisector in the triangle $Q B C$.
2. $Q P$ is a simedian in $Q B C$. Indeed, the Apollonius's circle of second rank, being an Apollonius's circle for $Q B C$, intersects the circle circum-scribed to $Q B C$ after $Q P$, which is simedian in this triangle.

$2^{\text {nd }}$ Definition.

It is called adjoint circle of a triangle the circle that passes through two vertices of the triangle and in
one of them is tangent to the triangle's side. We denote $(B \bar{A})$ the adjoint circle that passes through B and A, and is tangent to the side $A C$ in A.

About the circles $(B \bar{A})$ and $(C \bar{A})$, we say that they are adjoint to the vertex A of the triangle $A B C$.

$3^{\text {rd }}$ Definition.

It is called the second Brocard's triangle the triangle $A_{2} B_{2} C_{2}$ whose vertices are the projections of the center of the circle circumscribed to the triangle $A B C$ on triangle's simedians.

$2^{\text {nd }}$ Proposition.

The Apollonius's circle of second rank relative to the vertex A of triangle $A B C$ and the adjoint circles relative to the same vertex A intersect in vertex A_{2} of the second Brocard's triangle.

Proof.

It is known that the adjoint circles $(B \bar{A})$ and $(C \bar{A})$ intersect in a point belonging to the simedian $A S$; we denote this point A_{2} (see [3]).

We have:

$$
\Varangle B A_{2} S=\Varangle A_{2} B A+\Varangle A_{2} A B,
$$

but:

$$
\Varangle A_{2} B A \equiv \Varangle B A_{2} S=\Varangle A_{2} A B+A_{2} A C=\Varangle A .
$$

Analogously, $\Varangle C A_{2} S=\Varangle A$, therefore $\left(A_{2} S\right.$ is the bisector of the angle $B A_{2} C$. The bisector's theorem in this triangle leads to:

$$
\frac{S B}{S C}=\frac{B A_{2}}{C A_{2}},
$$

but:

$$
\frac{S B}{S C}=\left(\frac{A B}{A C}\right)^{2},
$$

consequently:

$$
\frac{B A_{2}}{C A_{2}}=\left(\frac{A B}{A C}\right)^{2},
$$

so A_{2} is a point that belongs to the Apollonius's circle of second rank.

Figure 2.
We prove that A_{2} is a vertex in the second Brocard's triangle, i.e. $O A_{2} \perp A S$, O the center of the circle circumscribed to the triangle $A B C$.

We pointed (see Figure 2) that $m\left(\widehat{B A_{2} C}\right)=2 A$, if $\Varangle A$ is an acute angle, then also $m(\widehat{B O C})=2 A$, therefore the quadrilateral $O C A_{2} B$ is inscriptible.

Because $m(\widehat{O C B})=90^{\circ}-m(\hat{A})$, it follows that $m\left(\widehat{B A_{2} O}\right)=90^{\circ}+m(\hat{A})$.

On the other hand, $m\left(\widehat{A A_{2} B}\right)=180^{\circ}-m(\hat{A})$, so $m\left(\widehat{B A_{2} O}\right)+m\left(\widehat{A A_{2} B}\right)=270^{\circ}$ and, consequently, $O A_{2} \perp$ $A S$.

Remarks.

1. If $m(\hat{A})<90^{\circ}$, then four remarkable circles pass through A_{2} : the two circles adjoint to the vertex A of the triangle $A B C$, the circle circumscribed to the triangle BOC (where O is the center of the circumscribed circle) and the Apollonius's circle of second rank corresponding to the vertex A.
2. The vertex A_{2} of the second Brocard's triangle is the middle of the chord of the circle circumscribed to the triangle $A B C$ containing the simedian $A S$.
3. The points O, A_{2} and S^{\prime} (the foot of the external simedian to $A B C$) are collinear. Indeed, we proved that $O A_{2} \perp A S$; on the other hand, we proved that $\left(A_{2} S\right.$ is an internal bisector in the triangle $B A_{2} C$, and
since $S^{\prime} A_{2} \perp A S$, the outlined collinearity follows from the uniqueness of the perpendicular in A_{2} on $A S$.

Open Problem.

The Apollonius's circle of second rank relative to the vertex A of the triangle $A B C$ intersects the circle circumscribed to the triangle $A B C$ in two points P and Q (P and A apart of $B C$).

We denote by X the second point of intersection between the line $A P$ and the Apollonius's circle of second rank.

What can we say about X ?
Is X a remarkable point in triangle's geometry?

References.

[1] I. Patrascu, F. Smarandache: Cercurile Apollonius de rangul k [The Apollonius's Circle of $k^{t h}$ rank]. In: "Recreații matematice", Anul XVIII, nr. 1/2016, Iași, România, p. 20-23.
[2] I. Patrascu: Axe și centre radicale ale cercurilor adjuncte ale unui triunghi [Axes and Radical Centers of Adjoint Circles of a Triangle]. In: "Recreații matematice", Anul XVII, nr. 1/2010, Iași, România.
[3] R. Johnson: Advanced Euclidean Geometry. New York: Dover Publications, Inc. Mineola, 2007.
[4] I. Patrascu, F. Smarandache: Variance on topics of plane geometry. Columbus: The Educational Publisher, Ohio, USA, 2013.

