A Generalized Numeration Base

by Florentin Smarandache, Ph. D.
University of New Mexico
Gallup, NM 87301, USA

Abstract

A Generalized Numeration Base is defined in this paper, and then particular cases are presented, such as Prime Base, Square Base, m-Power Base, Factorial Base, and operations in these bases.

Keywords: Numeration base, partition.

1991 MSC: 11A67

Introduction.

The following bases are important for partitions of integers into primes, squares, cubes, generally into m-powers, also into factorials, and into any strictly increasing sequence.

1) The Prime Base:
```
    0,1,10,100,101, 1000,1001,10000,10001,10010,10100,100000,100001, 1000000,
    1000001, 1000010, 1000100, 10000000,10000001, 100000000, 100000001, 100000010,
    100000100,1000000000,1000000001,1000000010,1000000100,1000000101, ... .
    (Each number n written in the Prime Base.)
(We define over the set of natural numbers the following infinite
base: }\mp@subsup{p}{0}{}=1\mathrm{ , and for k >= 1 p is the k-th prime number.)
He proved that every positive integer A may be uniquely written in
the Prime Base as:
```

n

If we note by $p(A)$ the superior prime part of A (i.e. the largest prime less than or equal to A), then
A is written in the Prime Base as:

```
A=p(A) + p(A-p(A)) + p(A-p(A)-p(A-p(A))) + ... .
```

This base is important for partitions with primes.

2) The Square Base:

$0,1,2,3,10,11,12,13,20,100,101,102,103,110,111,112,1000,1001,1002,1003$, $1010,1011,1012,1013,1020,10000,10001,10002,10003,10010,10011,10012,10013$, $10020,10100,10101,100000,100001,100002,100003,100010,100011,100012,100013$, $100020,100100,100101,100102,100103,100110,100111,100112,101000,101001$, 101002 , 101003, 101010, 101011, 101012, 101013, 101020, 101100, 101101, 101102, 1000000,... .
(Each number n written in the Square Base.)
(We define over the set of natural numbers the following infinite base: for $k>=0 \quad s=k^{\wedge} 2$.)
k

We prove that every positive integer A may be uniquely written in the Square Base as:

```
A=(\mp@code{a \cdotsa a )}
    i=0
    0<= a <= 3, 0<= a <= 2, and of course a = 1,
            0 1 n
```

in the following way:
- if $s_{n}<=A<s_{n+1}$ then $A=s_{n}+r_{1} ;$
- if $\mathrm{s}_{\mathrm{m}}^{\mathrm{n}}<=\mathrm{r}_{1}<\mathrm{p}_{\mathrm{m}+1}^{\mathrm{n}+1}$ then $\mathrm{r}_{1}=\underset{\mathrm{m}}{\mathrm{s}}+\mathrm{r}_{2}^{1}, \mathrm{~m}<\mathrm{n}$;
and so on until one obtains a rest $r=0$.
j

Therefore, any number may be written as a sum of squares (1 not counted as a square -- being obvious) $+e$, where $e=0$, 1 , or 3 .

If we note by $s(A)$ the superior square part of A (i.e. the largest square less than or equal to A), then A is written in the Square Base as:

$$
A=s(A)+s(A-s(A))+s(A-s(A)-s(A-s(A)))+\ldots .
$$

This base is important for partitions with squares.

3) The m-Power Base (generalization):

(Each number n written in the m-Power Base, where m is an integer >= 2.)

```
(We define over the set of natural numbers the following infinite
m-Power Base: for k >= 0 t = k^m.)
                    k
```

He proved that every positive integer A may be uniquely written in the m-Power Base as:


```
    i=0
```



```
for \(i=0,1, \ldots, m-1, a_{i}=0\) or 1 for \(i>=m\), and of course \(a=1\),
in the following way:
    - if \(t<=A<t \quad\) then \(A=t+r\);
    - if \(t^{n}<=r<t^{n+1}\) then \(r=t^{n}+r_{2}^{1}, m<n\);
    and so on until one obtains a rest \(r=0\).
j
```

Therefore, any number may be written as a sum of m-powers (1 not counted as an m-power -- being obvious) $+e$, where $e=0,1,2$, ..., or $2^{\wedge} m-1$.

If we note by $t(A)$ the superior m-power part of A (i.e. the largest m-power less than or equal to A), then A is written in the m-Power Base as:

$$
A=t(A)+t(A-t(A))+t(A-t(A)-t(A-t(A)))+\ldots
$$

This base is important for partitions with m-powers.

4) The Factorial Base:

$0,1,10,11,20,21,100,101,110,111,120,121,200,201,210,211,220,221,300,301,310$, $311,320,321,1000,1001,1010,1011,1020,1021,1100,1101,1110,1111,1120,1121$, 1200,...
(Each number n written in the Factorial Base.)
(We define over the set of natural numbers the following infinite base: for $k>=1 \quad f=k!)$

He proved that every positive integer A may be uniquely written in the Factorial Base as:


```
    ---
i=1
in the following way:
```



```
    - if fi<= r<f then r = f + r,m<n;
        m 1 m+1 m
    and so on until one obtains a rest r = 0.
                            j
What's very interesting: a m = 0 or 1; a m = 0, 1, or 2; a = 0, 1, 2, or 3,
and so on...
If we note by f(A) the superior factorial part of A (i.e. the
largest factorial less than or equal to A), then A is written in the
Factorial Base as:
```

```
A=f(A) + f(A-f(A)) + f(A-f(A)-f(A-f(A))) + ....
```

A=f(A) + f(A-f(A)) + f(A-f(A)-f(A-f(A))) +
Rules of addition and subtraction in Factorial Base:
For each digit a we add and subtract in base i+1, for i >= 1.
I

```

For example, an addition:
base 5432
\begin{tabular}{ll}
2 & 1 \\
2 & 2
\end{tabular}\(+\)

1101
because: \(0+1=1\) (in base 2); \(1+2=10\) (in base 3), therefore we write 0 and keep 1 ; \(2+2+1=11\) (in base 4).

Now a subtraction:

because: 1-0=1 (in base 2);
\(0-2=\) ? it's not possible (in base 3 ),
go to the next left unit, which is 0 again (in base 4), go again to the next left unit, which is 1 (in base 5), therefore 1001 --> 0401 --> 0331 and then \(0331-320=11\).

Find some rules for multiplication and division.
```

In a general case:
if we want to design a base such that any number
n

```

```

 \(i>=1\), where all \(t>=1\), then:
 i
 this base should be
 \(b_{1}=1, \quad b \underset{i+1}{ }=(t+1) * \underset{i}{b}\) for \(i>=1\).
    ```

\section*{5) The Generalized Numeration Base:}
(Each number \(n\) written in the Generalized Numeration Base.)
```

(We define over the set of natural numbers the following infinite
Generalized Numeration Base: 1 = g < < g m < .. < g < <)

```

He proved that every positive integer \(A\) may be uniquely written in the Generalized Numeration Base as:
n

```

 i=0
 (integer part) for i = 0, 1, ..., n, and of course a >= 1,
in the following way:

```

```

 - if g<=r< < then r = g + r, m<n;
 and so on until one obtains a rest r = 0.
 j
 If we note by g(A) the superior generalized part of A (i.e. the
largest g less than or equal to A), then A is written in the
i
Generalized Numeration Base as:

```
\(A=g(A)+g(A-g(A))+g(A-g(A)-g(A-g(A)))+\ldots\)
This base is important for partitions: the generalized base may be any
infinite integer set (primes, squares, cubes, any m-powers, Fibonacci/Lucas
    numbers, Bernoully numbers, Smarandache sequences, etc.) those partitions
    are studied.
```

 A particular case is when the base verifies: 2g >= g for any i,
 i i+1
 and g = 1, because all coefficients of a written number in this base
 0
 will be 0 or 1.
 Remark: another particular case: if one takes g}\mp@subsup{g}{I}{= p
 ..., p an integer >= 2, one gets the representation of a number in the
 numerical base p {p may be 10 (decimal), 2 (binary), 16 (hexadecimal),
 etc.}.
    ```

\section*{References:}
"
[1] Dumitrescu, C., Seleacu, V., "Some notions and questions in number theory", Xiquan Publ. Hse., Glendale, 1994, Sections \#47-51. "
[2] Grebenikova, Irina, "Some Bases of Numerations", <Abstracts of Papers Presented at the American Mathematical Society>, Vol. 17, No. 3, Issue 105, 1996, p. 588.```

