Another proof of the I. Pătraşcu's theorem Florentin SMARANDACHE ${ }^{1}$

> Abstract. In this note the author presents a new proof for the theorem of I. Pătraşcu. Keywords: median, symmedian, Brocard's points.
> MSC 2010: 97 G 40 .

In [1], Ion Pătraşcu proves the following
Theorem. The Brocard's point of an isosceles triangle is the intersection of a median and the symmedian constructed from the another vertex of the triangle's base, and reciprocal.

We'll provide below a different proof of this theorem than the proof given in [1] and [2].

We'll recall the following definitions:
Definition 1. The symmetric cevian of the triangle's median in rapport to the bisector constructed from the same vertex is called the triangle's symmedian.

Definition 2. The points Ω, Ω^{\prime} from the plane of the triangle $A B C$ with the property $\widehat{\Omega B A} \equiv \widehat{\Omega A C} \equiv \widehat{\Omega C B}$, respectively $\widehat{\Omega^{\prime} A B} \equiv \widehat{\Omega^{\prime} B C} \equiv \widehat{\Omega^{\prime} C A}$, are called the Brocard's points of the given triangle.

Remark. In an arbitrary triangle there exist two Brocard's points.
Proof of the Theorem. Let $A B C$ an isosceles triangle, $A B=A C$, and Ω the Brocard's point, therefore $\widehat{\Omega B A} \equiv \widehat{\Omega A C} \equiv \widehat{\Omega C B}=\omega$.

We'll construct the circumscribed circle to the triangle $B \Omega C$. Having $\widehat{\Omega B A} \equiv \widehat{\Omega C B}$ and $\widehat{\Omega C A} \equiv \widehat{\Omega B C}$, it results that this circle is tangent in B, respectively in C to the sides $A B$, respectively $A C$.

We note M the intersection point of the line $B \Omega$ with $A C$ and with N the intersection point of the lines $C \Omega$ and $A B$. From the similarity of the triangles $A B M$, $\Omega A M$, we obtain

$$
\begin{equation*}
M B \cdot M \Omega=A M^{2} \tag{1}
\end{equation*}
$$

Considering the power of the point M in rapport to the constructed circle, we obtain

$$
\begin{equation*}
M B \cdot M \Omega=M C^{2} \tag{2}
\end{equation*}
$$

From the relations (1) and (2) it results that $A M=M C$, therefore, $B M$ is a median.
If $C P$ is the median from C of the triangle, then from the congruency of the triangles $A B M, A C P$ we find that $\widehat{A C P} \equiv \widehat{A B M}=\omega$. It results that the cevian $C N$ is a symmedian and the direct theorem is proved.

[^0]

We'll prove the reciprocal of this theorem. In the triangle $A B C$ is known that the median $B M$ and the symmedian $C N$ intersect in the Brocard's point Ω. We'll construct the circumscribed circle to the triangle $B \Omega C$. We observe that because

$$
\begin{equation*}
\widehat{\Omega B A} \equiv \widehat{\Omega C B} \tag{3}
\end{equation*}
$$

this circle is tangent in B to the side $A B$. From the similarity of the triangles $A B M, \Omega A M$ it results $A M^{2}=M B \cdot M \Omega$. But $A M=M C$, it results that $M C^{2}=$ $M B \cdot M \Omega$. This relation shows that the line $A C$ is tangent in C to the circumscribed circle to the triangle $B \Omega C$, therefore

$$
\begin{equation*}
\widehat{\Omega B C} \equiv \widehat{\Omega C A} \tag{4}
\end{equation*}
$$

By adding up relations (3) and (4) side by side, we obtain $\widehat{A B C} \equiv \widehat{A C B}$, consequently, the triangle $A B C$ is an isosceles triangle.

References

1. I. Pătraşcu - O teoremă relativă la punctual lui Brocard, Gazeta Matematică, nr. 9/1984, LXXXIX, 328-329.
2. I. Pătraşcu - Asupra unei teoreme relative la punctual lui Brocard, Revista Gamma, nr. 1-2/1988, Braşov.

[^0]: ${ }^{1}$ University of New Mexico, Gallup Campus, U.S.A.

