# On Crittenden and Vanden Eynden's Conjecture 

Florentin Smarandache<br>University of Craiova, Romania

It is possible to cover all (positive) integers with $n$ geometrical progressions of integers?
Find a necessary and sufficient condition for a general class of positive integer sequences such that, for a fixed $n$, there are $n$ (distinct) sequences of this class which cover all integers.

Comments:
a) No. Let $a_{1}, \ldots, a_{n}$ be respectively the first terms of each geometrical progression, and $q_{1}, \ldots, q_{n}$ respectively their ratios. Let $p$ be a prime number different from $a_{1}, \ldots, a_{n}, q_{1}, \ldots, q_{n}$. Then $p$ does not belong to the union of these $n$ geometrical progressions.
b) For example, the class of progressions $A_{f}=\left\{\left\{a_{n}\right\}_{n \geq 1}: a_{n}=f\left(a_{n-1}, \ldots, a_{n-i}\right)\right.$ for $n \geq i+1$, and $\left.i, a_{1}, a_{2}, . . \in N^{*}\right\}$ with the property
$\exists y \in N^{*}, \forall\left(x_{1}, \ldots, x_{i}\right) \in N^{* i}: f\left(x_{1}, \ldots, x_{i}\right) \neq y$. Does it cover all integers?
But, if $\forall y \in N^{*}, \exists\left(x_{1}, \ldots, x_{i}\right) \in N^{* i}: f\left(x_{1}, \ldots, x_{i}\right)=y$ ?
(Generally no.)
This (solved and unsolved) problem remembers Crittenden and Vanden Eynden's conjecture.

## References:

[1] R.B. Crittenden and C. L. Vanden Eynden, Any $n$ arithmetic progressions covering the first $2^{n}$ integers covers all integers, Proc. Amer. Math. Soc. 24 (1970) 475-481.
[2] R.B. Crittenden and C. L. Vanden Eynden, The union of arithmetic progression with differences not less than k, Amer. Math. Monthly 79 (1972) 630.
[3] R. K. Guy, Unsolved Problem in Number Theory, Springer-Verlag, NewYork, Heidelberg, Berlin, 1981, Problem E23, p.136.

