Non-Congruent Triangles with Equal Perimeters and Arias

Prof. Ion Pătraşcu, The National College "Frații Buzeşti" - Craiova Prof. Florentin Smarandache, University of New Mexico - U.S.A.

In [1] Professor I. Ivănescu from Craiova has proposed the following Open problem
Construct, using a ruler and a compass, two non-congruent triangles, which have equal perimeters and arias.

In preparation for the proof of this problem we recall several notions and we prove a Lemma.

Definition

An A-ex-inscribed circle to a given triangle $A B C$ is the tangent circle to the side $(B C)$ and to the extended sides $(A B),(A C)$.

The center of the A-ex-inscribed triangle is the intersection of the external bisectors of the angles B and C, which we note it with I_{a} and its radius with r_{a}.

Observation 1.

To a given triangle correspond three ex-inscribed circles. In figure 1 we represent the A-ex-inscribed circle to triangle $A B C$.

Fig. 1

Lemma 1

The length of the tangent constructed from one of the triangle's vertexes to the corresponding ex-inscribed circle is equal with the triangle's semi-perimeter.

Proof
Let D_{a}, E_{a}, F_{a} the points of contact of the A-ex-inscribed triangle with $(B C), A C, A B$. We have $A E_{a}=A F_{a}, B D_{a}=B F_{a}, C D_{a}=C E_{a}$ (the tangents constructed from a point to a circle are congruent). We note $B D_{a}=x, C D_{a}=y$ and we observe that $A E_{a}=A C+C E_{a}$, therefore $A E_{a}=b+y, A F_{a}=A B+B F_{a}$, it results that $A F_{a}=c+x$. We resolve the system:

$$
\left\{\begin{array}{l}
x+y=a \\
x+c=y+b
\end{array}\right.
$$

and we obtain

$$
\begin{aligned}
& x=\frac{1}{2}(a+b-c) \\
& y=\frac{1}{2}(a+c-b)
\end{aligned}
$$

Taking into consideration that the semi-perimeter $p=\frac{1}{2}(a+b+c)$ we have $x=p-c ; y=p-b$, and we obtain that $A F_{a}=A E_{a}=p$ thus the lemma is proved.

The proof of the open problem

Fig. 2

Let $A B C$ a given triangle. We construct $C(I, r)$ its inscribed circle and $C\left(I_{a}, r_{a}\right)$ its A-ex-inscribed circle, see figure 2 . In conformity with the Lemma we have that $A F_{a}=p$ - the semi-perimeter of triangle $A B C$.

We construct the point $F^{\prime} \in(A F)$ and the circle of radius r tangent in F^{\prime} to $A B$, that is $C\left(I^{\prime}, r\right)$. It is easy to justify that angle $F^{\prime} A I^{\prime}>$ angle $F A I$ and therefore angle $F^{\prime} A E^{\prime}>$ angle A (we noted E^{\prime} the contact point with the circle $C\left(I^{\prime}, r\right)$ of the tangent constructed from A). We note I_{a}^{\prime} the intersection point of the lines $A I^{\prime}, I_{a} F_{a}$.

We construct the circle $C\left(I_{a}^{\prime} I_{a}^{\prime} F_{a}\right)$ and then the internal common tangent to this circle and to the circle $C\left(I^{\prime}, r\right)$; we note B^{\prime}, C^{\prime} the intersections of this tangent with $A B$ respectively with $A E^{\prime}$. From these constructions it result that the circle $C\left(I^{\prime}, r\right)$ is inscribed in the triangle $A B^{\prime} C^{\prime}$ and the circle $C\left(I_{a}^{\prime} I_{a}^{\prime} F_{a}\right)$ ex-inscribed to this triangle.

The Lemma states that the semi-perimeter of the triangle $A B^{\prime} C^{\prime}$ is equal with $A F_{a}$ therefore it is equal to p - the semi-perimeter of triangle $A B C$.

On the other side the inscribed circles in the triangles $A B C$ and $A B^{\prime} C^{\prime}$ are congruent. Because the aria S of the triangle $A B C$ is given by the formula $S=p \cdot r$, we obtain that also the aria of triangle $A B^{\prime} C^{\prime}$ is equal with S.

The constructions listed above can be executed with a ruler and a compass without difficulty, and the triangles $A B C$ and $A B^{\prime} C^{\prime}$ are not congruent.

Indeed, our constructions are such that the angle $B^{\prime} A C^{\prime}$ is greater than angle $B A C$. Also we can choose F^{\prime} on $(A F)$ such that $F^{\prime} A I^{\prime}$ is different of $\frac{1}{2} \mathrm{C}$ and of $\frac{1}{2} \mathrm{~B}$. In this way the angle A of the triangle $A B^{\prime} C^{\prime}$ is not congruent with any angle of the triangle $A B C$.

Observation 2

We practically proved much more than the proposed problem asked, because we showed that for any given triangle $A B C$ we can construct another triangle which will have the same aria and the same perimeter with the given triangle without being congruent with it.

Observation 3

In [2] the authors find two isosceles triangles in the conditions of the hypothesis.

Note

The authors thank to Professor Ștefan Brânzan from the National College "Frații Buzeşti"

- Craiova for his suggestions, which made possible the enrichment of this article.

References

[1] Ionuț Ivǎnescu - Rezolvarea unei problem deschise - Revista Sfera Matematicii, nr. 18/ 2010-2011, Bǎileşti
[2] Lucian Tuţescu, Dumitru Cotoi - Triunghiuri cu arii şi perimetre egale - Revista Implicații, National College "Ştefan Velovan", Craiova, 2011.

