
 1 

 

A CLASS OF RECURSIVE SETS 
 

Florentin Smarandache 

University of New Mexico 

200 College Road 

Gallup, NM 87301, USA 

E-mail: smarand@unm.edu 

 

In this article one builds a class of recursive sets, one establishes 

properties of these sets and one proposes applications. This article widens 

some results of [1]. 

1) Definitions, properties. 

One calls recursive sets the sets of elements which are built in a recursive manner: 

let T  be a set of elements and fi  for i  between 1  and s , of operations ni , such that  

fi :T ni T . Let’s build by recurrence the set M  included in T  and such that: 

(Def. 1)  1
o
) certain elements a1,...,an  of T , belong to M . 

  2
o
) if ( i1

,..., ini
)  belong to M , then fi ( i1

,..., ini
)  belong to M for all 

i 1,2,..., s . 

  3
o
) each element of M is obtained by applying a number finite of times the rules 

1
o 
 or 2

o
 . 

We will prove several proprieties of these sets M , which will result from the manner in 

which they were defined.  The set M is the representative of a class of recursive sets 

because in the rules 1
o 

 and 2
o
, by particularizing the elements a1,...,an  respectively 

f1,..., fs  one obtains different sets. 

 

Remark 1 :  To obtain an element of M , it is necessary to apply initially the rule 

1. 

(Def. 2) The elements of M are called elements M -recursive. 

(Def. 3) One calls order of an element a  of M the smallest natural p 1 which 

has the propriety that a  is obtained by applying p  times the rule 1
o 
or 2

o
. 

One notes M p  the set which contains all the elements of order p  of M . It is 

obvious that M1 a1,...,an . 

M2 fi ( i1
,..., ini

)
( i1

,..., ini
) M1

ni

U
i 1

s

U \ M1 . 

One withdraws M1  because it is possible that 
1

( ,..., )
n j

j j j if a a a  which belongs 

to  M1 ,  and thus does not belong to M2 . 

One proves that for k 1 one has: 
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M k 1 fi ( i1
,..., ini

)

( i1
,..., ini

)
k

( i )

U
i 1

s

U \ Mh

h 1

k

U  

where each  

 

 ( i1
,..., ini

) /
k

(i )

i j
M q j

 j 1,2,...,ni ; 1 q j k  and at least  an 

element  ai jo
M k ,1 jo ni . 

The sets M p ,  p *  form a partition  of the set M . 

  

Theorem 1: 

  

 M M p

p *

U , where * 1,2,3,... . 

Proof: 

From the rule 1
o
 it results that M1 M . 

One supposes that this propriety is true for values which are less than p . It results 

that M p M , because M p  is obtained by applying the rule 2
o
 to the elements of M i

i 1

p 1

U . 

Thus M p

p *

U M . Reciprocally, one has the inclusion in the contrary sense in 

accordance with the rule 3
o
. 

 

Theorem 2: The set M is the smallest set, which has the properties 1
o 
and 2

o
. 

Proof: 

Let R  be the smallest set having properties 1
o 

and 2
o
. One will prove that this set 

is unique. 

Let’s suppose that there exists another set R ' having properties 1
o 
and 2

o
, which is 

the smallest. Because R is the smallest set having these proprieties, and because R '  has 

these properties also, it results that R R ' ; of an analogue manner, we have R ' R :  

therefore R R ' . 

It is evident that M ' R . One supposes that Mi R  for 1 i p . Then (rule 

3
o
), and taking in consideration the fact that each element of M p  is obtained by applying 

rule 2
o
 to certain elements of Mi

, 1 i p  it results that pM R . Therefore 

*( )p

p

M R p ¥ , thus M R . And because R  is unique, M R . 

Remark 2. The theorem 2 replaces the rule 3
o
 of the recursive definition of the set 

M  by: ” M is the smallest set that satisfies proprieties 1
o 
and 2

o
”. 

 

Theorem 3: M is the intersection of all the sets of T which satisfy conditions 1
o 

and 2
o
. 

Proof:  
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Let T12
 be the family of all sets of T satisfying the conditions 1

o 
and 2

o
.  We note 

12A T

I A . 

I  has the properties 1
o 
 and 2

o
 because:  

1) For all i 1,2,...,n , ai I , because ai A  for all A  of T12
. 

2) If i1
,..., ini

I , it results that i1
,..., ini

belong to A  that is A  of T12
. 

Therefore,  

i 1,2,..., s , fi ( i1
,..., ini

) A  which is A of T12
, therefore fi ( i1

,..., ini
) I  

for all i  from 1,2,..., s . 

From theorem 2 it results that M I . 

BecauseM satisfies the conditions 1
o 

and 2
o
, it results that M T12

, from which 

I M . ThereforeM I  

(Def. 4) A set A I is called closed for the operation fi0 if and only if for all 

i0 1,..., i0 n i0
 of A , one has fi0 ( i0 1,..., i0 n i0

)  belong to A . 

(Def. 5) A set A T is called closed M -recursive if and only if: 

1) a1,...,an A . 

2) A is closed in respect to operations f1,..., fs . 

With these definitions, the precedent theorems become: 

 

Theorem 2’: the set M is the smallest closed M - recursive set. 

 

Theorem 3’: M is the intersection of all closed M - recursive sets. 

(Def. 6) The system of elements 1,..., m , m 1 and 
i T  for 

i 1,2,...,m , constitute a description M -recursive for the element , if 
m

 and 

that each 
i
 ( i 1,2,...,m ) satisfies at least one of the proprieties: 

 1) i a1,...,an . 

2) 
i
 is obtained starting with the elements which precede it in the system by 

applying the functions f j ,  1 j s  defined by property 2
o
  of  (Def. 1). 

(Def. 7) The number m  of this system is called the length of the M -recursive 

description for the element . 

 

Remark 3: If the element  admits a M -recursive description, then it admits an 

infinity of such descriptions.  

Indeed, if 1,..., m  is a M -recursive description of  then 

1 1 1,..., , ,..., m

h times

a a  is also a M -recursive description for ,  h  being able to take all 

values from . 
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Theorem 4: The set M  is identical with the set of all elements of T  which admit 

a M -recursive description. 

Proof: let D  be the set of all elements, which admit a M -recursive description. 

We will prove by recurrence that M p D  for all p  of * . 

For  p 1  we have:  M1 a1,...,an , and the a j , 1 j n  having as M -

recursive description: a j . Thus M1 D . Let’s suppose that the property is true for 

the values smaller than p . M p  is obtained by applying the rule 2
o
 to the elements of 

1

1

;
p

i p

i

M M  implies that 
1

( ,..., )
ni

j i if  and  i j
Mhj

 for  h j p  and  

1 j ni . 

But ai j ,  1 j ni , admits M -recursive descriptions according to the hypothesis of 

recurrence, let’s have 
1,..., jj js

. Then 11,..., 1s1
, 21,..., 2s2

,..., ni 1
,..., ni sni

,  

constitute a M -recursive description for the element . Therefore if  belongs to D , 

then M p D  which is M M p

p *

U D . 

Reciprocally, let x  belong toD . It admits a M -recursive description b1,...,bt  with 

bt x . It results by recurrence by the length of the M -recursive description of the 

element x , that x M . For t 1 we have b1 , b1 x  and b1 a1,...,an M . One 

supposes that all elements y  of D  which admit a M -recursive description of a length 

inferior to t  belong to M . Let x D  be described by a system of length t : b1,...,bt , 

bt x . Then x a1,...,an M , where x  is obtained by applying the rule 2
o
 to the 

elements which precede it in the system: b1,...,bt 1
. But these elements admit the M -

recursive descriptions of length which is smaller that t : b1 , b1,b2 ,..., b1,...,bt 1 . 

According to the hypothesis of the recurrence, b1,...,bt 1
 belong to M . Therefore bt  

belongs also to M . It results that M D . 

 Theorem 5: Let b1,...,bq  be elements of T, which are obtained from the elements 

a1,...,an  by applying a finite number of times the operations 
1 2, ,..., or sf f f . Then M  

can be defined recursively in the following mode: 

1) Certain elements a1,...,an ,b1,...,bq  of T  belong to M . 

2) M  is closed for the applications fi , with i 1,2,..., s . 

3) Each element of M  is obtained by applying a finite number of times the rules (1) or 

(2) which precede. 

Proof: evident. Because b1,...,bq  belong to T , and are obtained starting with the 

elements a1,...,an  of M  by applying a finite number of times the operations fi , it results 

that b1,...,bq  belong to M . 
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Theorem 6: Let’s have g j ,  1 j r , of the operations n j , where g j :T
n j T  

such that M  to be closed in rapport to these operations. Then M  can be recursively 

defined in the following manner: 

1) Certain elements a1,...,an  de T  belong to M . 

2) M  is closed for the operations fi , i 1,2,..., s  and g j , j 1,2,...,r . 

3) Each element of M  is obtained by applying a finite number of times the precedent 

rules. 

Proof is simple: Because M  is closed for the operations g j  (with j 1,2,...,r ), one 

has, that for any j1,..., jn j
 from M , g j ( j1,..., jn j

) M  for all j 1,2,...,r . 

 From the theorems 5 and 6 it results: 

Theorem 7: The set M can be recursively defined in the following manner: 

1) Certain elements a1,...,an ,b1,...,bq of T  belong to M . 

2) M  is closed for the operations fi  ( i 1,2,..., s ) and for the operations g j  

( j 1,2,...,r ) previously defined. 

3) Each element of  M is defined by applying a finite number of times the previous 2 

rules. 

(Def. 8) The operation fi  conserves the property P  iff for any elements i1,..., ini
 

having the property P , fi ( i1,..., ini
)  has the property P . 

Theorem 8 : If a1,...,an  have the property P , and if the functions f1,..., fs  

preserve this property, then all elements of M  have the property P . 

Poof:  

 M M p

p *

U . The elements of M1
 have the property P .  

Let’s suppose that the elements of Mi
 for i p  have the property P . Then the 

elements of M p  also have this property because M p  is obtained by applying the 

operations f1, f2,..., fs  to the elements of: M i

i 1

U , elements which have the property P . 

Therefore, for any p  of , the elements of M p  have the property P .  

 Thus all elements of M  have it. 

 Corollary 1 : Let’s have the property P : ” x  can be represented in the form 

F(x)”. 

 If a1,...,an  can be represented in the form F(a1),...,  respectively F(an ) , and if 

1,..., sf f  maintains the property P , then all elements  ofM  can be represented in the 

form F( ) . 

Remark. One can find more other equivalent def. of M . 
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2) APPLICATIONS, EXAMPLES. 

 

 In applications, certain general notions like: M - recursive element, M -recursive 

description, M - recursive closed set will be replaced by the attributes which characterize 

the set M .  For example in the theory of recursive functions, one finds notions like: 

recursive primitive functions, primitive recursive description, primitively recursive closed 

sets. In this case ” M ” has been replaced by the attribute ”primitive” which characterizes 

this class of functions, but it can be replaced by the attributes ”general”, ”partial”. 

 By particularizing the rules 1
o 

and 2
o
 of the def. 1, one obtains several interesting 

sets: 

 Example 1: (see [2], pp. 120-122, problem 7.97). 

 Example 2: The set of terms of a sequence defined by a recurring relation 

constitutes a recursive set. 

 Let’s consider the sequence:  an k f (an,an 1,...,an k 1) for all n  of * , with 
0 , 1i ia a i k . One will recursively construct the set A am m *  and one will 

define in the same time the position of an element in the set A : 

 1°)  a1

0 ,...,ak
0
 belong to A , and each ai

0
 (1 i k ) occupies the position i  in the 

set A ; 

 2°) if an,an 1,...,an k 1
 belong to A , and each a j  for n j n k 1 occupies 

the position j  in the set A , then f (an,an 1,...,an k 1)  belongs to A  and occupies the 

position n k  in the set A . 

 3°) each element of B  is obtained by applying a finite number of times the rules 

1
o 
 or 2

o
. 

 Example 3: Let G e,a1,a2,...,ap  be a cyclic group generated by the element 

a  . Then ,G  can be recursively defined in the following manner: 

 1°) a  belongs to G . 

 2°) if b  and c  belong to G  then b c belongs to G . 

 3°) each element of G  is obtained by applying a finite number of times the rules 

1 or 2. 

 Example 4: Each finite set ML x1,x2,...,xn  can be recursively defined (with 

ML T ): 

 1°) The elements x1,x2,...,xn  of T  belong to ML . 

 2°) If a  belongs to ML , then f (a)  belongs to ML , where f :T T  such that 

f (x) x ; 

 3°) Each element of ML  is obtained by applying a finite number of times the 

rules 1° or 2°. 

 Example 5: Let L  be a vectorial space on the commutative corps K  and 

x1,...,xm  be a base of L . Then L , can be recursively defined in the following manner: 

 1°) x1,...,xm  belong to L ; 

 2°) if x, y  belong to L  and if a  belongs to K , then x y  y  belong to L  and 

a x  belongs to  L ; 
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3°) each element of L  is recursively obtained by applying a finite number of 

times the rules 1° or 2°. 

(The operators  and   are respectively the internal and external operators of 

the vectorial space L ). 

Example 6: Let X  be an A -module, and M X  (M ) , with M xi i I
. 

The sub-module generated by M  is: 

1 1/ ... , , , 1,...,n n i iM x X x a x a x a A x M i n  

can recursively defined in the following way: 

 1°) for all i  of  1,2,...,n , 1,2,..., in x M ; 

 2°) if x  and y  belong to M  anda  belongs to A , then x y  belongs to M , 

and ax  also; 

 3°) each element of M  is obtained by applying a finite number of times the 

rules 1° or 2°. 

In accordance to the paragraph 1 of this article, M  is the smallest sub-set of X 

that verifies the conditions 1° and 2°, that is M  is the smallest sub-module of X that 

includes M . M  is also the intersection of all the subsets of X  that verify the 

conditions 1° and 2°, that is M  is the intersection of all sub-modules of X  that contain 

M . One also directly refines some classic results from algebra.  

 One can also talk about sub-groups or ideal generated by a set: one also 

obtains some important applications in algebra. 

Example 7: One also obtains like an application the theory of formal languages, 

because, like it was mentioned, each regular language (linear at right) is a regular set and 

reciprocally. But a regular set on an alphabet a1,...,an  can be recursively defined 

in the following way: 

1°) , , a1 ,..., an  belong to R . 

2°) if P  and Q  belong to R , then P Q , PQ , and P  belong to R , with 

/  or P Q x x P x Q ; /  and PQ xy x P y Q , and P Pn

n 0

U  with 

 

n

n times

P P P P  and, by convention, P0 . 

3°) Nothing else belongs to R  other that those which are obtained by using 1° or 

2°. 

From which many properties of this class of languages with applications to the 

programming languages will result. 
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