FLORENTIN SMARANDACHE Conjectures Which Generalize Andrica's Conjecture

In Florentin Smarandache: "Collected Papers", vol. III. Oradea (Romania): Abaddaba, 2000.

CONJECTURES WHICH GENERALIZE ANDRICA'S CONJECTURE

Five conjectures on paires of consecutive primes are listed below with examples in each case.

1) The equation $p_{n+1}^x - p_n^x = 1$, (1) where p_n is the n-th prime, has a unique solution situated in between 0.5 and 1. Checking the first 168 prime numbers (less than 1000), one gets that:

- the maximum occurs of course for n=1, i.e. $3^{x}-2^{x}=1$ when x=1. - the minimum occurs for n=31, i.e. $127^{x} - 113^{x} = 1$ when $x = 0.567148... = a_{0}$. (2)

Thus, Andrica's Conjecture

 $A_n = \sqrt{p_{n+1}} - \sqrt{p_n} < 1,$

is generalized to

2) $B_n = p_{n+1}^a - p_n^a < 1$, where $a < a_0$. (3) It is remarkable that the minimum x doesn't occur for

 $11^{x} - 7^{x} = 1$

as in Andrica's Conjecture the maximum value, but in (2).

Also, the function B_n in (3) is falling asymptotically as A_n in (2). Look at these prime exponential equations solved with a TI-92 Graphing Calculator (approximately: the bigger the prime number gap is, the smaller solution x for the equation (1);

for the same gap between two consecutive primes, the larger the primes, the bigger x):

 $3^{x} - 2^{x} = 1$, has the solution x = 1.000000.

 $5^{x} - 3^{x} = 1$, has the solution $x \approx 0.727160$.

 $7^{x} - 5^{x} = 1$, has the solution $x \approx 0.763203$.

 $11^{x} - 7^{x} = 1$, has the solution $x \approx 0.599669$.

 $13^{x} - 11^{x} = 1$, has the solution $x \approx 0.807162$. $17^{x} - 13^{x} = 1$, has the solution $x \approx 0.647855$. $19^x - 17^x = 1$, has the solution $x \approx 0.826203$. $29^{x} - 23^{x} = 1$, has the solution $x \approx 0.604284$. $37^{x} - 31^{x} = 1$, has the solution $x \approx 0.624992$. $97^{x} - 89^{x} = 1$, has the solution $x \approx 0.638942$. $127^{x} - 113^{x} = 1$, has the solution $x \approx 0.567148$. $149^{x} - 139^{x} = 1$, has the solution $x \approx 0.629722$. $191^{x} - 181^{x} = 1$, has the solution $x \approx 0.643672$. $223^{x} - 211^{x} = 1$, has the solution $x \approx 0.625357$. $307^{x} - 293^{x} = 1$, has the solution $x \approx 0.620871$. $331^{x} - 317^{x} = 1$, has the solution $x \approx 0.624822$. $497^{x} - 467^{x} = 1$, has the solution $x \approx 0.663219$. $521^{x} - 509^{x} = 1$, has the solution $x \approx 0.666917$. $541^{x} - 523^{x} = 1$, has the solution $x \approx 0.616550$. $751^{x} - 743^{x} = 1$, has the solution $x \approx 0.732706$. $787^{x} - 773^{x} = 1$, has the solution $x \approx 0.664972$. $853^{x} - 839^{x} = 1$, has the solution $x \approx 0.668274$. $877^{x} - 863^{x} = 1$, has the solution $x \approx 0.669397$. $907^{x} - 887^{x} = 1$, has the solution $x \approx 0.627848$. $967^{x} - 953^{x} = 1$, has the solution $x \approx 0.673292$. $997^{x} - 991^{x} = 1$, has the solution $x \approx 0.776959$.

If $x > a_0$, the difference of x-powers of consecutive primes is normally grater than 1. Checking more versions:

3 ^{0.99}	-	2 ^{0.99}	≈ 0.981037.
110.99	-	7 ^{0.99}	≈ 3.874270.
$11^{0.60}$	-	7 ^{0.60}	≈ 1.001270.
11 ^{0.59}	-	7 ^{0.59}	≈ 0.963334.
11 ^{0.55}	-	70.55	≈ 0.822980.
11 ^{0.50}	-	7 ^{0.50}	≈ 0.670873 .
389 ^{0.99}	-	383 ^{0.99}	≈ 5.596550.
110.599	-	70.599	≈ 0.997426.
17 ^{0.599}	-	130.599	≈ 0.810218.
37 ^{0.599}	-	31 ^{0,599}	≈ 0.874526.
127 ^{0,599}	-	113 ^{0.599}	≈ 1.230100.

	997 ^{0.599}	-	991 ^{0.599}	≈ 0.225749.
	1270.5	-	1130.5	≈ 0.639282.
	3) $C_n =$	$p_{n+1}^{1/k} -$	$p_n^{1/k} <$	$\frac{1}{2} / k$, where p_n is the n-th prime,
and k	≥ 2 is an in	teger.		
	$11^{1/2}$	-	7 ^{1/2}	≈ 0.670873.
	111/4	-	71/4	≈ 0.1945837251.
	11115	-	71/5	≈ 0.1396211046.
	$127^{1/5}$	-	1131/5	≈ 0.060837.
	3 ^{1/2}	-	2 ^{1/2}	≈ 0.317837.
	3 ^{1/3}	-	21/3	≈ 0.1823285204.
	51/3	-	3 ^{1/3}	≈ 0.2677263764.
	7 ^{1/3}	-	5 ^{1/3}	≈ 0.2029552361.
	$11^{1/3}$, \star	-	7 ^{1/3}	≈ 0.3110489078.
	131/3	-	$11^{1/3}$	≈ 0.1273545972.
	17 ^{1/3}	-	131/3	≈ 0.2199469029.
	371/3	-	31 ^{1/3}	≈ 0.1908411993.
	$127^{1/3}$	-	1131/3	≈ 0.191938.

4) $D_n = p_{n+1}^a - p_n^a < 1 / n$, (4)where $a < a_0$ and n big enough, n = n(a), holds for infinitely many consecutive primes.

a) Is this still available for a < 1?

b) Is there any rank n_0 depending on a and n such that (4) is verified for all $n \ge n_0$?

A few examples:

50.8	-	3 ^{0.8}	≈ 1.21567.
7 ^{o 8}	-	5 ^{0.8}	≈ 1.11938.
$11^{-0.8}$	-	7 ^{0.8}	≈ 2.06621.
1270.8	-	1130.8	≈ 4.29973.
3070.8	-	293 ^{0.8}	≈ 3.57934.
997 ^{0.8}	-	991 ^{0.8}	≈ 1.20716.

5) $P_{n+1}/P_n \le 5/3$,

the maximum occurs at n=2.

{The ratio of two consecutive primes is limited, while the

(5)

difference $p_{n+1} - p_n$ can be as big as we want!} However, $1/p_n - 1/p_{n-1} \le 1/6$, and the maximum occurs at n=1.

Reference:

[1] Sloane, N. J. A., Sequence A001223/M0296 in <An On-Line Version of the Encyclopedia of Integer Sequences>.

["Octogon", Braşov, Vol.7, No.1, 173-6, 1999.]