FLORENTIN SMARANDACHE
 Conjectures Which Generalize Andrica's Conjecture

In Florentin Smarandache: "Collected Papers", vol. III. Oradea (Romania): Abaddaba, 2000.

CONJECTURES WHICH GENERALIZE ANDRICA'S CONJECTURE

Five conjectures on paires of consecutive primes are listed below with examples in cach case.

1) The equation $p_{n+1}^{x}-p_{n}^{x}=1$,
where p_{n} is the n-th prime, has a unique solution situated in between 0.5 and 1. Checking the first 168 prime numbers (less than 1000), one gets that:

- the maximum occurs of course for $\mathrm{n}=1$, i.e.
$3^{\mathrm{x}}-2^{\mathrm{x}}=1$ when $\mathrm{x}=1$.
- the minimum occurs for $\mathrm{n}=31$, i.e.
$127^{x}-113^{x}=1$ when $x=0.567148 \ldots=a_{0}$.
Thus, Andrica's Conjecture

$$
A_{n}=\sqrt{p_{n+1}}-\sqrt{p_{n}}<1
$$

is generalized to

$$
\begin{equation*}
\text { 2) } \quad B_{n}=p_{n+1}^{a}-p_{n}^{a}<1, \text { where } a<a_{0} \text {. } \tag{3}
\end{equation*}
$$

It is remarkable that the minimum x doesn't occur for
$11^{x}-7^{x}=1$
as in Andrica's Conjecture the maximum value, but in (2).
Also, the function B_{n} in (3) is falling asymptotically as A_{n} in (2). Look at these prime exponential equations solved with a TI-92 Graphing Calculator (approximately: the bigger the prime number gap is, the smaller solution x for the equation (1);
for the same gap between two consecutive primes, the larger the primes, the bigger x):
$3^{x}-2^{x}=1$, has the solution $x=1.000000$.
$5^{x}-3^{x}=1$, has the solution $x \approx 0.727160$.
$7^{x}-5^{x}=1$, has the solution $x \approx 0.763203$.
$11^{x}-7^{x}=1$, has the solution $x \approx 0.599669$.
$13^{x}-11^{x}=1$, has the solution $x \approx 0.807162$.
$17^{x}-13^{x}=1$, has the solution $x \approx 0.647855$.
$19^{x}-17^{x}=1$, has the solution $x \approx 0.826203$.
$29^{x}-23^{x}=1$, has the solution $x \approx 0.604284$.
$37^{x}-31^{x}=1$, has the solution $x \approx 0.624992$.
$97^{x}-89^{x}=1$, has the solution $x \approx 0.638942$.
$127^{x}-113^{x}=1$, has the solution $x \approx 0.567148$.
$149^{x}-139^{x}=1$, has the solution $x \approx 0.629722$.
$191^{x}-181^{x}=1$, has the solution $x \approx 0.643672$.
$223^{x}-211^{x}=1$, has the solution $x \approx 0.625357$.
$307^{x}-293^{x}=1$, has the solution $x \approx 0.620871$.
$331^{x}-317^{x}=1$, has the solution $x \approx 0.624822$.
$497^{x}-467^{x}=1$, has the solution $x \approx 0.663219$.
$521^{x}-509^{x}=1$, has the solution $x \approx 0.666917$.
$541^{x}-523^{x}=1$, has the solution $x \approx 0.616550$.
$751^{x}-743^{x}=1$, has the solution $x \approx 0.732706$.
$787^{x}-773^{x}=1$, has the solution $x \approx 0.664972$.
$853^{x}-839^{x}=1$, has the solution $x \approx 0.668274$.
$877^{x}-863^{x}=1$, has the solution $x \approx 0.669397$.
$907^{x}-887^{x}=1$, has the solution $x \approx 0.627848$.
$967^{x}-953^{x}=1$, has the solution $x \approx 0.673292$.
$997^{x}-991^{x}=1$, has the solution $x \approx 0.776959$.
If $x>a_{0}$, the difference of x-powers of consecutive primes is nor-
mally grater than 1 . Checking more versions:

$3^{0.99}$	-	$2^{0.99}$	≈ 0.981037.
$11^{0.99}$	-	$7^{0.99}$	≈ 3.874270.
$11^{0.601}$	-	$7^{0.61)}$	≈ 1.001270.
$11^{0.59}$	-	$7^{0.59}$	≈ 0.963334.
$11^{0.55}$	-	$7^{0.55}$	≈ 0.822980.
$11^{0.50}$	-	$7^{0.50}$	≈ 0.670873.
$389^{0.99}$	-	$383^{0.99}$	≈ 5.596550.
$11^{0.544}$	-	$7^{0.599}$	≈ 0.997426.
$17^{0.599}$	-	$13^{0.594}$	≈ 0.810218.
$37^{0.594}$	-	$31^{0.599}$	≈ 0.874526.
$127^{0.599}$	-	$113^{0.594}$	≈ 1.230100.

$997^{0.549}-\quad 991^{0.599} \approx 0.225749$.
$127^{0.5} \quad-\quad 113^{0.5} \approx 0.639282$.
3) $C_{n}=p_{n+1}^{1 / k}-p_{n}^{1 / k}<2 / k$, where p_{n} is the n -th prime, and $k \geq 2$ is an integer.

$11^{1 / 2}-$	$7^{1 / 2}$	≈ 0.670873.
$11^{1 / 4}-$	$7^{1 / 4}$	≈ 0.1945837251.
$11^{1 / 5}-$	$7^{1 / 5}$	≈ 0.1396211046.
$127^{1 / 5}-$	$113^{1 / 5}$	≈ 0.060837.
$3^{1 / 2}-$	$2^{1 / 2}$	≈ 0.317837.
$3^{1 / 3}-$	$2^{1 / 3}$	≈ 0.1823285204.
$5^{1 / 3}-$	$3^{1 / 3}$	≈ 0.2677263764.
$7^{1 / 3}-$	$5^{1 / 3}$	≈ 0.2029552361.
$11^{1 / 3}-$	$7^{1 / 3}$	≈ 0.3110489078.
$13^{1 / 3}-$	$11^{1 / 3}$	≈ 0.1273545972.
$17^{1 / 3}-$	$13^{1 / 3}$	≈ 0.2199469029.
$37^{1 / 3}-$	$31^{1 / 3}$	≈ 0.1908411993.
$127^{1 / 3}-$	$113^{1 / 3}$	≈ 0.191938.

4) $D_{n}=p_{n+1}^{a}-p_{n}^{a}<1 / n$,
where $\mathrm{a}<\mathrm{a}_{0}$ and n big enough, $\mathrm{n}=\mathrm{n}(\mathrm{a})$, holds for infinitely many consecutive primes.
a) Is this still available for $\mathrm{a}<1$?
b) Is there any rank n_{o} depending on a and n such that (4) is verified for all $n \geq n_{0}$?

A few examples:

$5^{0.8}$	-	$3^{0.8}$	≈ 1.21567.
$7^{0.8}$	-	$5^{0.8}$	≈ 1.11938.
$11^{0.8}$	-	$7^{0.8}$	≈ 2.06621.
$127^{0.8}$	-	$113^{0.8}$	≈ 4.29973.
$307^{0.8}$	-	$293^{0.8}$	≈ 3.57934.
$997^{0.8}$	-	$991^{10.8}$	≈ 1.20716.

$$
\begin{equation*}
\text { 5) } P_{n-1} / P_{n} \leq 5 / 3, \tag{5}
\end{equation*}
$$

the maximum occurs at $\mathrm{n}=2$.
\{The ratio of two consecutive primes is limited, while the

FLORENTIN SMARANDACHE

difference $p_{m}-p_{n}$ can be as big as we want! $\}$
However. $1 / p_{n}-1 / p_{n} \leq 1 / 6$, and the maximum occurs at $n=1$.

Feference:
[1] Sloane, N. J. A., Sequence A001223/M0296 in <An On-Line Version of the Encyclopedia of Integer Sequences>.
["Octogon", Braşov, Vol.7, No.1, 173-6, 1999.]

