FLORENTIN SMARANDACHE

Deducibility Theorems in Boolean

 LogicIn Florentin Smarandache: "Collected Papers", vol. I (second edition). Ann Arbor (USA): InfoLearnQuest, 2007.

DEDUCIBILITY THEOREMS IN BOOLEAN LOGIC

Abstract

In this paper we give two theorems from the Propositional Calculus of the Boolean Logic with their consequences and applications and we prove them axiomatically.

§1. THEOREMS, CONSEQUENCES

In the beginning I shall put forward the axioms of the Propositional Calculus.
I. a) $\vdash A \supset(B \supset A)$,
b) $\quad \vdash(A \supset(B \supset C)) \supset((A \supset B) \supset(A \supset C))$.
II. a) $\vdash A \wedge B \supset A$,
b) $\vdash A \wedge B \supset B$,
c) $\quad \vdash(A \supset B) \supset((A \supset C) \supset(A \supset B \wedge C))$.
III. a) $\vdash A \supset A \vee B$,
b) $\vdash B \supset A \vee B$,
c) $\quad \vdash(A \supset C) \supset((B \supset C) \supset(A \vee B \supset C))$.
IV. a) $\vdash(A \supset B) \supset(\bar{B} \supset \bar{A})$,
b) $\vdash A \supset \overline{\bar{A}}$,
c) $\vdash \overline{\bar{A}} \supset A$.

THEOREMS. If: $\vdash A_{\iota} \supset B_{i}, i=\overline{1, n}$, then

1) $\vdash A_{1} \wedge A_{2} \wedge \ldots \wedge A_{n} \supset B_{1} \wedge B_{2} \wedge \ldots \wedge B_{n}$,
2) $\vdash A_{1} \vee A_{2} \vee \ldots \vee A_{n} \supset B_{1} \vee B_{2} \vee \ldots \vee B_{n}$.

Proof:
It is made by complete induction. For $n=1: \vdash A_{1} \supset B_{1}$, which is true from the given hypothesis. For $n=2$: hypotheses $\vdash A_{1} \supset B_{1}, \vdash A_{2} \supset B_{2}$; let's show that $\vdash A_{1} \wedge A_{2} \supset B_{1} \wedge B_{2}$. We use the axiom II, c) replacing $A \rightarrow A_{1} \wedge A_{2}, B \rightarrow B_{1}, C \rightarrow B_{2}$, it results:
(1) $\quad \vdash\left(A_{1} \wedge A_{2} \supset B_{1}\right) \supset\left(\left(A_{1} \wedge A_{2} \supset B_{2}\right) \supset\left(A_{1} \wedge A_{2} \supset B_{1} \wedge B_{2}\right)\right)$.

We use the axiom II, a) replacing $A \rightarrow A_{1}, B \rightarrow A_{2}$; we have $\vdash A_{1} \wedge A_{2} \supset A_{1}$. But $\vdash A_{1} \supset B_{1}$ (hypothesis) applying the syllogism rule, it results $\vdash A_{1} \wedge A_{2} \supset B_{1}$. Analogously, using the axiom II, b), we have $\vdash A_{1} \wedge A_{2} \supset B_{2}$. We know that $\vdash A_{1} \wedge A_{2} \supset B_{i}, i=1,2$, are deducible, then applying in (I) inference rule twice, we have $\vdash A_{1} \wedge A_{2} \supset B_{1} \wedge B_{2}$.

We suppose it's true for n; let's prove that for $n+1$ it is true. In $\vdash A_{1} \wedge A_{2} \supset B_{1} \wedge B_{2} \quad$ replacing $\quad A_{1} \rightarrow A_{1} \wedge \ldots \wedge A_{n}, \quad A_{2} \rightarrow A_{n+1}, \quad B_{1} \rightarrow B_{1} \wedge \ldots \wedge B_{n}$, $B_{2} \rightarrow B_{n+1}$ and using induction hypothesis it results $\vdash A_{1} \wedge \ldots \wedge A_{n} \wedge A_{n+1} \supset B_{1} \wedge \ldots \wedge B_{n} \wedge B_{n+1}$ and item 1) from the Theorem is proved.
2) It is made by induction. For $n=1$; if $\vdash A_{1} \supset B_{1}$, then of course $\vdash A_{1} \supset B_{1}$. For $n=2:$ if $\vdash A_{1} \supset B_{1}$ and $\vdash A_{2} \supset B_{2}$, then $\vdash A_{1} \vee A_{2} \supset B_{1} \vee B_{2}$.

We use axiom III, c) replacing $A \rightarrow A_{1}, B \rightarrow A_{2}, C \rightarrow B_{1} \vee B_{2}$ we get
$\vdash\left(A_{1} \supset B_{1} \vee B_{2}\right) \supset\left(\left(A_{2} \supset B_{1} \vee B_{2}\right) \supset\left(A_{1} \vee A_{2} \supset B_{1} \vee B_{2}\right)\right)$.
Let's show that $\vdash A_{1} \supset B_{1} \vee B_{2}$. We use the axiom III, a) replacing $A \rightarrow B_{1}$, $B \rightarrow B_{2}$ we get $\vdash B_{1} \supset B_{1} \vee B_{2}$ and we know from the hypothesis $A_{1} \quad B_{1}$. Applying the syllogism we get $\vdash A_{1} \supset B_{1} \vee B_{2}$.

In the axiom III, b) replacing $A \rightarrow B_{1}, B \rightarrow B_{2}$, we get $\vdash B_{2} \supset B_{1} \vee B_{2}$. But $\vdash A_{2} \supset B_{2}$ (from the hypothesis), applying the syllogism we get $\vdash A_{2} \supset B_{1} \vee B_{2}$. Applying the inference rule twice in (2) we get $\vdash A_{1} \vee A_{2} \supset B_{1} \vee B_{2}$.

Suppose it's true for n and let's show that for $n+1$ it is true. Replace in $\vdash A_{1} \vee A_{2} \supset B_{1} \vee B_{2} \quad\left(\right.$ true formula if $\quad \vdash A_{1} \supset B_{1} \quad$ and $\quad \vdash A_{2} \supset B_{2}$) $A_{1} \rightarrow A_{1} \vee \ldots \vee A_{n}, A_{2} \rightarrow A_{n+1}, B_{1} \rightarrow B_{1} \vee \ldots \vee B_{n}, B_{2} \rightarrow B_{n+1}$. From induction hypothesis it results $\vdash A_{1} \vee \ldots \vee A_{n} \vee A_{n+1} \supset B_{1} \vee \ldots \vee B_{n} \vee B_{n+1}$ and the theorem is proved.

CONSEQUENCES.

1°) If $\vdash A_{\iota} \supset B, i=\overline{1, n}$ then $\vdash A_{1} \wedge \ldots \wedge A_{n} \supset B$.
$\left.2^{\circ}\right)$ If $\vdash A_{\iota} \supset B, i=\overline{1, n}$, then $\vdash A_{1} \vee \ldots \vee A_{n} \supset B$.
Proof: 1°) Using 1) from the theorem, we get
(3) $\vdash A_{1} \wedge \ldots \wedge A_{n} \supset B \wedge \ldots \wedge B$ (n times).

In axiom II, a) we replace $A \rightarrow B, B \rightarrow B \wedge \ldots \wedge B$ ($n-1$ times), and we get
(4) $\vdash B \wedge \ldots \wedge B \supset B$ (n times).

From (3) and (4) by means of the syllogism rule we get $\vdash A_{1} \wedge \ldots \wedge A_{n} \supset B$.
2°) Using 2) from theorem, we get $\vdash A_{1} \vee \ldots \vee A_{n} \supset B \vee \ldots \vee B$ (n times).
LEMMA. $\vdash B \vee \ldots \vee B \supset B(n$ times $), n \geq 1$.
Proof:
It is made by induction. For $n=1$, obvious. For $n=2$: in axiom III, c) we replace $A \rightarrow B, C \rightarrow B$ and we get $\vdash(B \supset B) \supset((B \supset B) \supset(B \vee B \supset B))$. Applying the inference rule twice we get $\vdash B \vee B \supset B$.

Suppose for n that the formula is deducible, let's prove that is for $n+1$.
We proved that $\vdash B \supset B$. In axiom III, c) we replace $A \rightarrow B \vee \ldots \vee B$ (n times), $C \rightarrow B$, and we get $\vdash(B \vee \ldots \vee B \supset B) \supset((B \supset B) \supset(B \vee \ldots \vee B \supset B)) \quad(n$ times $)$. Applying two times the interference rule, we get $\vdash B \vee \ldots \vee B \supset B(n+1$ times) so lemma is proved.

From $\vdash A_{1} \vee \ldots \vee A_{n} \supset B \vee \ldots \vee B$ (n times) and applying the syllogism rule, from lemma we get $\vdash \mathrm{A}_{1} \vee \ldots \vee A_{n} \supset B$.
$\left.3^{\circ}\right) \vdash A \wedge \ldots \wedge A \supset A(n$ times $)$
$\left.4^{\circ}\right) \vdash A \vee \ldots \vee A \supset A(n$ times $)$.
Previously we proved, replacing in Consequence 1°) and 2°), $B \rightarrow A$. Analogously, the consequences are proven:
5°) If $\vdash A \supset B_{i}, i=\overline{1, n}$, then $\vdash A \supset B_{1} \wedge \ldots \wedge B_{n}$.
6°) If $\vdash A \supset B_{i}, i=\overline{1, n}$, then $\vdash A \supset B_{1} \vee \ldots \vee B_{n}$.
Analogously,
$\left.7^{\circ}\right) \vdash A \supset A \wedge \ldots \wedge A(n$ times $)$
$\left.8^{\circ}\right) \vdash A \supset A \vee \ldots \vee A$ (n times)
$\left.9^{\circ}\right) \vdash A_{1} \wedge \ldots \wedge A_{n} \supset A_{1} \vee \ldots \vee A_{n}$.
Proof:
Method I. It is initially proved by induction: $\vdash A_{1} \wedge \ldots \wedge A_{n} \supset A_{i}, i=\overline{1, n}$ and 2$)$ is applied from the Theorem.
Method II. It is proven by induction that: $\vdash A_{\iota} \supset A_{1} \wedge \ldots \wedge A_{n}, i=\overline{1, n}$ and then 1) is applied from the Theorem.
10°) If $\vdash A_{\iota} \supset B_{i}, i=\overline{1, n}$, then $\vdash A_{1} \wedge \ldots \wedge A_{n} \supset B_{1} \vee \ldots \vee B_{n}$.
Proof:
Method I. Using 1) from the Theorem, it results:

$$
\begin{equation*}
\vdash A_{1} \wedge \ldots \wedge A_{n} \supset B_{1} \wedge \ldots \wedge B_{n} \tag{5}
\end{equation*}
$$

We apply the Consequence 9°) where we replace $A_{i} \rightarrow B_{i}, i=\overline{1, n}$ and results:
(6) $\vdash B_{1} \wedge \ldots \wedge B_{n} \supset B_{1} \vee \ldots \vee B_{n}$.

From (5) and (6), applying the syllogism rule we get 10°).
Method II. We firstly use the Consequence 9°) and then 2) from the Theorem and so we obtain the Consequence 10°).

§2. APPLICATIONS AND REMARKS ON THEOREMS

The theorems are used in order to prove the formulae of the shape:

$$
\begin{aligned}
& \vdash A_{1} \wedge \ldots \wedge A_{p} \supset B_{1} \wedge \ldots \wedge B_{r} \\
& \vdash A_{1} \vee \ldots \vee A_{p} \supset B_{1} \vee \ldots \vee B_{r}, \text { where } p, r \in \mathbb{N}^{*}
\end{aligned}
$$

It is proven that $\vdash A_{\iota} \supset B_{j}$, i.e.

$$
\forall i \in \overline{1, p}, \quad \exists j_{0} \in \overline{1, r}, j_{0}=j_{0}(i), \vdash A_{\iota} \supset B_{j_{0}}
$$

and

$$
\forall j \in \overline{1, r}, \exists i_{0} \in \overline{1, p}, i_{0}=i_{0}(j), \vdash A_{\iota_{0}} \supset B_{j} .
$$

EXAMPLES: The following formulas are deducible:
(i) $\quad \vdash A \supset(A \vee B) \wedge(B \supset A)$,
(ii) $\vdash(A \wedge B) \vee C \supset A \vee B \vee C$,
(iii) $\vdash A \wedge C \supset A \vee C$.

Solution:

(i) We have $\vdash A \supset A \vee B$ and $\vdash A \supset(B \supset A)$ (axiom III, a) and I, a)) and according to 1) from Theorem it results (i).
(ii) From $\vdash A \supset(B \supset A), \vdash A \wedge B \supset B, \vdash C \supset C$ and Theorem 1), we have (ii).
(iii) Method I. From $\vdash A \wedge C \supset A, \vdash A \wedge C \supset C$ and Theorem 2).

Method II. From $\vdash A \supset A \vee C, \vdash C \supset A \vee C$ and using Theorem 1).
REMARKS. 1) The reciprocals of Theorem 1) and 2) are not always true.
a) Counter-example for Theorem 1). The formula $\vdash A \wedge B \supset A \wedge A$ is deducible from axiom II, a), $\vdash A \wedge A \supset A$ (Consequence 7°) and the syllogism rule. But $\vdash A \supset A$ for all A , that the formula $B \supset A$ is not deducible, so the reciprocal of the Theorem 1) is false.

Counter-example for Theorem 2). The formula $\vdash A \vee A \supset A \vee B$ is deducible from Lemma, axiom III, a) and applying the syllogism rule. But $\vdash A \supset A$ for all A, that the formula $A \supset B$ is not deducible, so the reciprocal of Theorem 2) is false.
2) The reciprocals of Theorem 1) and 2) are not always true.

Counter-examples:
a) for Theorem 1): $\vdash A \supset A$ and $B \not \supset A$ results that $\vdash A \wedge B \supset A \wedge A$ so the reciprocal of Theorem 1) is false.
b) for Theorem 2): $\vdash A \supset A$ and $A \not \supset B$ results that $\vdash A \vee A \supset A \vee B$ so the reciprocal of Theorem 2) is false.

REFERENCES:

[1] P. S. NOVOKOV. Elemente de logică matematică, Editura Ştiințifică, Bucureşti, 1966.
[2] H. FREUDENTHAL, Limbajul logicii matematice, Editura Tehnică, Bucureşti, 1973.

UNIVERSITATEA DIN CRAIOVA

Facultatea de tiinte Exacte
24.10.1979
[Published in "An. Univ. Timişoara", Seria Şt. Matematice, Vol. XVII, Fasc. 2, 1979, pp. 164-8.]

