Eight Solved and Eight Open Problems in Elementary Geometry

Florentin Smarandache
Math \& Science Department
University of New Mexico, Gallup, USA

In this paper we review eight previous proposed and solved problems of elementary 2D geometry [4], and we extend them either from triangles to polygons or from 2D-space to 3Dspace and make some comments about them.

Problem 1.

We draw the projections M_{i} of a point M on the sides $A_{i} A_{i+1}$ of the polygon $A_{1} \ldots A_{n}$.
Prove that:

$$
\left\|M_{1} A_{1}\right\|^{2}+\ldots+\left\|M_{n} A_{n}\right\|^{2}=\left\|M_{1} A_{2}\right\|^{2}+\ldots+\left\|M_{n-1} A_{n}\right\|^{2}+\left\|M_{n} A_{1}\right\|^{2}
$$

Solution 1.

For all i we have:

$$
\left\|M M_{i}\right\|^{2}=\left\|M A_{i}\right\|^{2}-\left\|A_{i} M_{i}\right\|^{2}=\left\|M A_{i+1}\right\|^{2}-\left\|A_{i+1} M_{i}\right\|^{2}
$$

It results that:

$$
\left\|M_{i} A_{i}\right\|^{2}-\left\|M_{i} A_{i+1}\right\|^{2}=\left\|M A_{i}\right\|^{2}-\left\|M A_{i+1}\right\|^{2}
$$

From where:

$$
\sum_{i}\left(\left\|M_{i} A_{i}\right\|^{2}-\left\|M_{i} A_{i+1}\right\|^{2}\right)=\sum_{i}\left(\left\|M A_{i}\right\|^{2}-\left\|M A_{i+1}\right\|^{2}\right)=0
$$

Open Problem 1.

1.1. If we consider in a 3D-space the projections M_{i} of a point M on the edges $A_{i} A_{i+1}$ of a polyhedron $A_{1} \ldots A_{n}$ then what kind of relationship (similarly to the above) can we find?
1.2. But if we consider in a 3D-space the projections M_{i} of a point M on the faces F_{i} of a polyhedron $A_{1} \ldots A_{n}$ with $\mathrm{k} \geq 4$ faces, then what kind of relationship (similarly to the above) can we find?

Problem 2.

Let's consider a polygon (which has at least 4 sides) circumscribed to a circle, and D the set of its diagonals and the lines joining the points of contact of two non-adjacent sides. Then D contains at least 3 concurrent lines.

Solution 2.

Let n be the number of sides. If $n=4$, then the two diagonals and the two lines joining the points of contact of two adjacent sides are concurrent (according to Newton's Theorem).

The case $n>4$ is reduced to the previous case: we consider any polygon $A_{1} \ldots A_{n}$ (see the figure)

circumscribed to the circle and we choose two vertices $A_{i}, A_{j}(i \neq j)$ such that

$$
A_{j} A_{j-1} \cap A_{i} A_{i+1}=P
$$

and

$$
A_{j} A_{j+1} \cap A_{i} A_{i-1}=R
$$

Let $B_{h}, h \in\{1,2,3,4\}$ the contact points of the quadrilateral $P A_{j} R A_{i}$ with the circle of center O. Because of the Newton's theorem, the lines $A_{i} A_{j}, B_{1} B_{3}$ and $B_{2} B_{4}$ are concurrent.

Open Problem 2.

2.1. In what conditions there are more than three concurrent lines?
2.2. What is the maximum number of concurrent lines that can exist (and in what conditions)?
2.3. What about an alternative of this problem: to consider instead of a circle an ellipse, and then a polygon ellipsoscribed (let's invent this word, ellipso-scribed, meaning a polygon whose all sides are tangent to an ellipse which inside of it): how many concurrent lines we can find among its diagonals and the lines connecting the point of contact of two non-adjacent sides?
2.4. What about generalizing this problem in a 3D-space: a sphere and a polyhedron circumscribed to it?
2.5. Or instead of a sphere to consider an ellipsoid and a polyhedron ellipsoido-scribed to it?

Of course, we can go by construction reversely: take a point inside a circle (similarly for an ellipse, a sphere, or ellipsoid), then draw secants passing through this point that intersect the
circle (ellipse, sphere, ellipsoid) into two points, and then draw tangents to the circle (or ellipse), or tangent planes to the sphere or ellipsoid) and try to construct a polygon (or polyhedron) from the intersections of the tangent lines (or of tangent planes) if possible.

For example, a regular polygon (or polyhedron) has a higher chance to have more concurrent such lines.

In the 3D space, we may consider, as alternative to this problem, the intersection of planes (instead of lines).

Problem 3.

In a triangle $A B C$ let's consider the Cevians $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ that intersect in P. Calculate the minimum value of the expressions:

$$
E(P)=\frac{\|P A\|}{\left\|P A^{\prime}\right\|}+\frac{\|P B\|}{\left\|P B^{\prime}\right\|}+\frac{\|P C\|}{\left\|P C^{\prime}\right\|}
$$

and

$$
F(P)=\frac{\|P A\|}{\left\|P A^{\prime}\right\|} \cdot \frac{\|P B\|}{\left\|P B^{\prime}\right\|} \cdot \frac{\|P C\|}{\left\|P C^{\prime}\right\|}
$$

where $A^{\prime} \in[B C], B^{\prime} \in[C A], C^{\prime} \in[A B]$.

Solution 3.

We'll apply the theorem of Van Aubel three times for the triangle $A B C$, and it results:

$$
\begin{aligned}
& \frac{\|P A\|}{\left\|P A^{\prime}\right\|}=\frac{\left\|A C^{\prime}\right\|}{\left\|C^{\prime} B^{\prime}\right\|}+\frac{\left\|A B^{\prime}\right\|}{\left\|B^{\prime} C\right\|} \\
& \frac{\|P B\|}{\left\|P B^{\prime}\right\|}=\frac{\left\|B A^{\prime}\right\|}{\left\|A^{\prime} C\right\|}+\frac{\left\|B C^{\prime}\right\|}{\left\|C^{\prime} A\right\|} \\
& \frac{\|P C\|}{\left\|P C^{\prime}\right\|}=\frac{\left\|C A^{\prime}\right\|}{\left\|A^{\prime} B^{\|}\right\|}+\frac{\left\|C B^{\prime}\right\|}{\left\|B^{\prime} A\right\|}
\end{aligned}
$$

If we add these three relations and we use the notation

$$
\frac{\left\|A C^{\prime}\right\|}{\left\|C^{\prime} B\right\|}=x>0, \frac{\left\|A B^{\prime}\right\|}{\left\|B^{\prime} C\right\|}=y>0, \frac{\left\|B A^{\prime}\right\|}{\left\|A^{\prime} C\right\|}=z>0
$$

then we obtain:

$$
E(P)=\left(x+\frac{1}{y}\right)+\left(x+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right) \geq 2+2+2=6
$$

The minimum value will be obtained when $x=y=z=1$, therefore when P will be the gravitation center of the triangle.

When we multiply the three relations we obtain

$$
F(P)=\left(x+\frac{1}{y}\right) \cdot\left(x+\frac{1}{y}\right) \cdot\left(z+\frac{1}{z}\right) \geq 8
$$

Open Problem 3.

3.1. Instead of a triangle we may consider a polygon $\mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{n}}$ and the lines $\mathrm{A}_{1} \mathrm{~A}_{1}{ }^{\prime}, \mathrm{A}_{2} \mathrm{~A}_{2}{ }^{\prime}$, $\ldots, \mathrm{A}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}}$, that intersect in a point P .
Calculate the minimum value of the expressions:

$$
\begin{gathered}
E(P)=\frac{\left\|P A_{1}\right\|}{\left\|P A_{1}{ }^{\prime}\right\|}+\frac{\left\|P A_{2}\right\|}{\left\|P A_{2}{ }^{\prime}\right\|}+\ldots+\frac{\left\|P A_{n}\right\|}{\left\|P A_{n}{ }^{\prime}\right\|} \\
F(P)=\frac{\left\|P A_{1}\right\|}{\left\|P A_{1}{ }^{\prime}\right\|} \cdot \frac{\left\|P A_{2}\right\|}{\left\|P A_{2}{ }^{\prime}\right\|} \cdot \ldots \cdot \frac{\left\|P A_{n}\right\|}{\left\|P A_{n}{ }^{\prime}\right\|}
\end{gathered}
$$

3.2. Then let's generalize the problem in the 3D space, and consider the polyhedron $\mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{n}}$ and the lines $\mathrm{A}_{1} \mathrm{~A}^{\prime}, \mathrm{A}_{2} \mathrm{~A}_{2}{ }^{\prime}, \ldots, \mathrm{A}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}}$ ' that intersect in a point P . Similarly, calculate the minimum of the expressions $\mathrm{E}(\mathrm{P})$ and $\mathrm{F}(\mathrm{P})$.

Problem 4.

If the points A_{1}, B_{1}, C_{1} divide the sides $B C, C A$ respectively $A B$ of a triangle in the same ratio $k>0$, determine the minimum of the following expression:

$$
\left\|A A_{1}\right\|^{2}+\left\|B B_{1}\right\|^{2}+\left\|C C_{1}\right\|^{2} .
$$

Solution 4.

Suppose $k>0$ because we work with distances.

$$
\left\|B A_{1}\right\|=k\|B C\|, \quad\left\|C B_{1}\right\|=k\|C A\|,\left\|A C_{1}\right\|=k\|A B\|
$$

We'll apply tree times Stewart's theorem in the triangle $A B C$, with the segments $A A_{1}, B B_{1}$, respectively $C C_{1}$:

$$
\|A B\|^{2} \cdot\|B C\|(1-k)+\|A C\|^{2} \cdot\|B C\| k-\left\|A A_{1}\right\|^{2} \cdot\|B C\|=\|B C\|^{3}(1-k) k
$$

where

$$
\left\|A A_{1}\right\|^{2}=(1-k)\|A B\|^{2}+k\|A C\|^{2}-(1-k) k\|B C\|^{2}
$$

similarly,

$$
\begin{aligned}
& \left\|B B_{1}\right\|^{2}=(1-k)\|B C\|^{2}+k\|B A\|^{2}-(1-k) k\|A C\|^{2} \\
& \left\|C C_{1}\right\|^{2}=(1-k)\|C A\|^{2}+k\|C B\|^{2}-(1-k) k\|A B\|^{2}
\end{aligned}
$$

By adding these three equalities we obtain:

$$
\left\|A A_{1}\right\|^{2}+\left\|B B_{1}\right\|^{2}+\left\|C C_{1}\right\|^{2}=\left(k^{2}-k+1\right)\left(\|A B\|^{2}+\|B C\|^{2}+\|C A\|^{2}\right),
$$

which takes the minimum value when $k=\frac{1}{2}$, which is the case when the three lines from the enouncement are the medians of the triangle.

The minimum is $\frac{3}{4}\left(\|A B\|^{2}+\|B C\|^{2}+\|C A\|^{2}\right)$.

Open Problem 4.

4.1. If the points $\mathrm{A}_{1}{ }^{\prime}, \mathrm{A}_{2}{ }^{\prime}, \ldots, \mathrm{A}_{\mathrm{n}}{ }^{\prime}$ divide the sides $\mathrm{A}_{1} \mathrm{~A}_{2}, \mathrm{~A}_{2} \mathrm{~A}_{3}, \ldots, \mathrm{~A}_{\mathrm{n}} \mathrm{A}_{1}$ of a polygon in the same ratio $\mathrm{k}>0$, determine the minimum of the expression:

$$
\left\|A_{1} A_{1}^{\prime}\right\|^{2}+\left\|A_{2} A_{2}^{\prime}\right\|^{2}+\ldots+\left\|A_{n} A_{n}^{\prime}\right\|^{2}
$$

4.2. Similarly question if the points $\mathrm{A}_{1}{ }^{\prime}, \mathrm{A}_{2}{ }^{\prime}, \ldots, \mathrm{A}_{\mathrm{n}}{ }^{\prime}$ divide the sides $\mathrm{A}_{1} \mathrm{~A}_{2}, \mathrm{~A}_{2} \mathrm{~A}_{3}, \ldots$, $A_{n} A_{1}$ in the positive ratios $k_{1}, k_{2}, \ldots, k_{n}$ respectively.
4.3. Generalize this problem for polyhedrons.

Problem 5.

In the triangle $A B C$ we draw the lines $A A_{1}, B B_{1}, C C_{1}$ such that

$$
\left\|A_{1} B\right\|^{2}+\left\|B_{1} C\right\|^{2}+\left\|C_{1} A\right\|^{2}=\left\|A B_{1}\right\|^{2}+\left\|B C_{1}\right\|^{2}+\left\|C A_{1}\right\|^{2}
$$

In what conditions these three Cevians are concurrent?

Partial Solution 5.

They are concurrent for example when $\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{1}$ are the legs of the medians of the triangle BCA. Or, as Prof. Ion Pătrașcu remarked, when they are the legs of the heights in an acute angle triangle BCA .

More general.
The relation from the problem can be written also as:

$$
a\left(\left\|A_{1} B\right\|-\left\|A_{1} C\right\|\right)+b\left(\left\|B_{1} C\right\|-\left\|C_{1} A\right\|\right)+c\left(\left\|C_{1} A\right\|-\left\|C_{1} B\right\|\right)=0,
$$

where a, b, c are the sides of the triangle.
We'll denote the three above terms as α, β, and respective γ, such that $\alpha+\beta+\gamma=0$.

$$
\alpha=a\left(\left\|A_{1} B\right\|-\left\|A_{1} C\right\|\right) \Leftrightarrow \frac{\alpha}{a}=\left\|A_{1} B\right\|-\left\|A_{1} C\right\|-2\left\|A_{1} C\right\|
$$

where

$$
\frac{\alpha}{a^{2}}=\frac{a-2\left\|A_{1} C\right\|}{a} \Leftrightarrow \frac{a^{2}}{a^{2}-\alpha}=\frac{a}{2\left\|A_{1} C\right\|} \Leftrightarrow \frac{a}{2\left\|A_{1} C\right\|}=\frac{2 a^{2}}{a^{2}-\alpha} \Leftrightarrow \frac{2 a^{2}-a^{2}+\alpha}{a^{2}-\alpha}=\frac{a-\left\|A_{1} C\right\|}{\left\|A_{1} C\right\|}
$$

Then

$$
\frac{\left\|A_{1} B\right\|}{\left\|A_{1} C\right\|}=\frac{a^{2}+\alpha}{a^{2}-\alpha} .
$$

Similarly:

$$
\frac{\left\|B_{1} C\right\|}{\left\|B_{1} A\right\|}=\frac{b^{2}+\beta}{b^{2}-\beta} \text { and } \frac{\left\|C_{1} A\right\|}{\left\|C_{1} B\right\|}=\frac{c^{2}+\gamma}{c^{2}-\gamma}
$$

In conformity with Ceva's theorem, the three lines from the problem are concurrent if and only if:

$$
\frac{\left\|A_{1} B\right\|}{\left\|A_{1} C\right\|} \cdot \frac{\left\|B_{1} C\right\|}{\left\|B_{1} A\right\|} \cdot \frac{\left\|C_{1} A\right\|}{\left\|C_{1} B\right\|}=1 \Leftrightarrow\left(a^{2}+\alpha\right)\left(b^{2}+\beta\right)\left(c^{2}+\gamma\right)=\left(a^{2}-\alpha\right)\left(b^{2}-\beta\right)\left(c^{2}-\gamma\right)
$$

Unsolved Problem 5.

Generalize this problem for a polygon.

Problem 6.

In a triangle we draw the Cevians $A A_{1}, B B_{1}, C C_{1}$ that intersect in P. Prove that

$$
\frac{P A}{P A_{1}} \cdot \frac{P B}{P B_{1}} \cdot \frac{P C}{P C_{1}}=\frac{A B \cdot B C \cdot C A}{A_{1} B \cdot B_{1} C \cdot C_{1} A}
$$

Solution 6.

In the triangle $A B C$ we apply the Ceva's theorem:

$$
\begin{equation*}
A C_{1} \cdot B A_{1} \cdot C B_{1}=-A B_{1} \cdot C A_{1} \cdot B C_{1} \tag{1}
\end{equation*}
$$

In the triangle $A A_{1} B$, cut by the transversal $C C_{1}$, we'll apply the Menelaus' theorem:

$$
\begin{equation*}
A C_{1} \cdot B C \cdot A_{1} P=A P \cdot A_{1} C \cdot B C_{1} \tag{2}
\end{equation*}
$$

In the triangle $B B_{1} C$, cut by the transversal $A A_{1}$, we apply again the Menelaus' theorem:

We apply one more time the Menelaus' theorem in the triangle $C C_{1} A$ cut by the transversal $B B_{1}$:

$$
\begin{equation*}
A B \cdot C_{1} P \cdot C B_{1}=A B_{1} \cdot C P \cdot C_{1} B \tag{4}
\end{equation*}
$$

We divide each relation (2), (3), and (4) by relation (1), and we obtain:

$$
\begin{align*}
& \frac{P A}{P A_{1}}=\frac{B C}{B A_{1}} \cdot \frac{B_{1} A}{B_{1} C} \tag{5}\\
& \frac{P B}{P B_{1}}=\frac{C A}{C B_{1}} \cdot \frac{C_{1} B}{C_{1} A} \tag{6}\\
& \frac{P C}{P C_{1}}=\frac{A B}{A C_{1}} \cdot \frac{A_{1} C}{A_{1} B} \tag{7}
\end{align*}
$$

Multiplying (5) by (6) and by (7), we have:

$$
\frac{P A}{P A_{1}} \cdot \frac{P B}{P B_{1}} \cdot \frac{P C}{P C_{1}}=\frac{A B \cdot B C \cdot C A}{A_{1} B \cdot B_{1} C \cdot C_{1} A} \cdot \frac{A B_{1} \cdot B C_{1} \cdot C A_{1}}{A_{1} B \cdot B_{1} C \cdot C_{1} A}
$$

but the last fraction is equal to 1 in conformity to Ceva's theorem.

Unsolved Problem 6.

Generalize this problem for a polygon.

Problem 7.

Given a triangle $A B C$ whose angles are all acute (acute triangle), we consider $A^{\prime} B^{\prime} C^{\prime}$, the triangle formed by the legs of its altitudes.

In which conditions the expression:

$$
\left\|A^{\prime} B^{\prime}\right\| \cdot\left\|B^{\prime} C^{\prime}\right\|+\left\|B^{\prime} C^{\prime}\right\| \cdot\left\|C^{\prime} A^{\prime}\right\|+\left\|C^{\prime} A^{\prime}\right\| \cdot\left\|A^{\prime} B^{\prime}\right\|
$$

is maximum?

Solution 7.

We have

$$
\begin{equation*}
\Delta A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime} \sim \triangle A B^{\prime} C \sim \Delta A^{\prime} B C^{\prime} \tag{1}
\end{equation*}
$$

We note

$$
\left\|B A^{\prime}\right\|=x,\left\|C B^{\prime}\right\|=y,\left\|A C^{\prime}\right\|=z
$$

It results that

$$
\begin{aligned}
& \left\|A^{\prime} C\right\|=a-x,\left\|B^{\prime} A\right\|=b-y,\left\|C^{\prime} B\right\|=c-z \\
& \widehat{B A C}=B^{\prime} A^{\prime} C=B A^{\prime} C^{\prime} ; ~ \\
& A B C=A B^{\prime} C^{\prime}=A^{\prime} B^{\prime} C^{\prime} ; B C A=B C^{\prime} A^{\prime}=B^{\prime} C^{\prime} A
\end{aligned}
$$

From these equalities it results the relation (1)

$$
\begin{align*}
& \Delta A^{\prime} B C^{\prime} \sim \Delta A^{\prime} B^{\prime} C \Rightarrow \frac{\left\|A^{\prime} C^{\prime}\right\|}{a-x}=\frac{x}{\left\|A^{\prime} B^{\prime}\right\|} \tag{2}\\
& \Delta A^{\prime} B^{\prime} C \sim \Delta A B^{\prime} C^{\prime} \Rightarrow \frac{\left\|A^{\prime} C^{\prime}\right\|}{z}=\frac{c-z}{\left\|B^{\prime} C^{\prime}\right\|} \tag{3}\\
& \Delta A B^{\prime} C^{\prime} \sim \Delta A^{\prime} B^{\prime} C \Rightarrow \frac{\left\|B^{\prime} C^{\prime}\right\|}{y}=\frac{b-y}{\left\|A^{\prime} B^{\prime}\right\|} \tag{4}
\end{align*}
$$

From (2), (3) and (4) we observe that the sum of the products from the problem is equal to:

$$
x(a-x)+y(b-y)+z(c-z)=\frac{1}{4}\left(a^{2}+b^{2}+c^{2}\right)-\left(x-\frac{a}{2}\right)^{2}-\left(y-\frac{b}{2}\right)^{2}-\left(z-\frac{c}{2}\right)^{2}
$$

which will reach its maximum as long as $x=\frac{a}{2}, y=\frac{b}{2}, z=\frac{c}{2}$, that is when the altitudes' legs are in the middle of the sides, therefore when the $\triangle A B C$ is equilateral. The maximum of the expression is $\frac{1}{4}\left(a^{2}+b^{2}+c^{2}\right)$.
Conclusion ${ }^{1}$: If we note the lengths of the sides of the triangle $\Delta \mathrm{ABC}$ by $\|\mathrm{AB}\|=c,\|\mathrm{BC}\|=a$, $\|\mathrm{CA}\|=b$, and the lengths of the sides of its orthic triangle $\Delta \mathrm{A}^{`} \mathrm{~B}^{`} \mathrm{C}^{`}$ by $\left\|\mathrm{A}^{`} \mathrm{~B}^{`}\right\|=c^{`},\left\|\mathrm{~B}^{`} \mathrm{C}^{`}\right\|=$ $a^{`},\left\|\mathrm{C}^{\prime} \mathrm{A}^{\prime}\right\|=b^{`}$, then we proved that:

$$
4\left(a^{`} b^{`}+b^{`} c^{`}+c^{`} a^{`}\right) \leq a^{2}+b^{2}+c^{2}
$$

Unsolved Problems 7.

7.1. Generalize this problem to polygons. Let $\mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{m}}$ be a polygon and P a point inside it. From P, which is called a pedal point, we draw perpendiculars on each side $A_{i} A_{i+1}$ of the polygon and we note by $A_{i}{ }^{\prime}$ the intersection between the perpendicular and the side $\mathrm{A}_{\mathrm{i}} \mathrm{A}_{\mathrm{i}+1}$. Let's extend the definition of pedal triangle to a pedal polygon in a straight way: i.e. the polygon formed by the orthogonal projections of a pedal point on the sides of the polygon. The pedal polygon $\mathrm{A}_{1}{ }^{\prime} \mathrm{A}_{2}{ }^{\prime} \ldots \mathrm{A}_{\mathrm{m}}$ ' is formed. What properties does this pedal polygon have?
7.2. Generalize this problem to polyhedrons. Let $\mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{n}}$ be a polyhedron and P a point inside it. From P we draw perpendiculars on each edge $A_{i} A_{j}$ of the polyhedron and we note by A_{ij} ' the intersection between the perpendicular and the side $\mathrm{A}_{\mathrm{i}} \mathrm{A}_{\mathrm{ij}}$. Let's name the

[^0]new formed polyhedron an edge pedal polyhedron, $\mathrm{A}_{1}{ }^{\prime} \mathrm{A}_{2}{ }^{\prime} \ldots \mathrm{A}_{\mathrm{n}}$ '. What properties does this edge pedal polyhedron have?
7.3. Generalize this problem to polyhedrons in a different way. Let $\mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{n}}$ be a poliyhedron and P a point inside it. From P we draw perpendiculars on each polyhedron face F_{i} and we note by A_{i} ' the intersection between the perpendicular and the side F_{i}. Let's call the new formed polyhedron a face pedal polyhedron, which is $\mathrm{A}_{1}{ }^{\prime} \mathrm{A}_{2}{ }^{\prime} \ldots \mathrm{A}_{\mathrm{p}}{ }^{\prime}$, where p is the number of polyhedron's faces. What properties does this face pedal polyhedron have?

Problem 8.

Given the distinct points A_{1}, \ldots, A_{n} on the circumference of a circle with the center in O and of ray R.

Prove that there exist two points A_{i}, A_{j} such that $\left\|\overrightarrow{O A_{i}}+\overrightarrow{O A}_{j}\right\| \geq 2 R \cos \frac{180^{\circ}}{n}$

Solution 8.

Because

$$
\Varangle A_{1} O A_{2}+\Varangle A_{2} O A_{3}+\ldots+\Varangle A_{n-1} O A_{n}+\Varangle A_{n} O A_{1}=360^{\circ}
$$

and $\forall i \in\{1,2, \ldots, n\}, \Varangle A_{i} O A_{i+2}>0^{\circ}$, it result that it exist at least one angle $\Varangle A_{i} O A_{j} \leq \frac{360^{\circ}}{n}$ (otherwise it follows that $S>\frac{360^{\circ}}{n} \cdot n=360^{\circ}$).

$$
\overrightarrow{O A_{i}}+\overrightarrow{O A_{j}}=\overrightarrow{O M} \Rightarrow\left\|\overrightarrow{O A_{i}}+\overrightarrow{O A_{j}}\right\|=\|\overrightarrow{O M}\|
$$

The quadrilateral $O A_{i} M A_{j}$ is a rhombus. When α is smaller, $\|\overrightarrow{O M}\|$ is greater. As $\alpha \leq \frac{360^{\circ}}{n}$, it results that: $\|\overrightarrow{O M}\|=2 R \cos \frac{\alpha}{2} \geq 2 R \cos \frac{180^{\circ}}{n}$.

Open Problem 8:

Is it possible to find a similar relationship in an ellipse? (Of course, instead of the circle's radius R one should consider the ellipse's axes a and b.)

References:

[1] Cătălin Barbu, Teorema lui Smarandache, in his book "Teoreme fundamentale din geometria triunghiului", Chapter II, Section II.57, p. 337, Editura Unique, Bacău, 2008.
[2] József Sándor, Geometric Theorems, Diophantine Equations, and Arithmetic Functions, AR Press, pp. 9-10, Rehoboth 2002.
[3] F. Smarandache, Eight Solved and Eight Open Problems in Elementary Geometry, in arXiv.org at http://arxiv.org/abs/1003.2153.
[4] F. Smarandache, Problèmes avec et sans... problèmes!, pp. 49 \& 54-60, Somipress, Fés, Morocoo, 1983.

[^0]: ${ }^{1}$ This is called the Smarandache's Orthic Theorem (see [2], [3]).

