FLORENTIN SMARANDACHE
Existence and Number of Solutions of Diophantine Quadratic Equations with Two Unknowns in Z and N

EXISTENCE AND NUMBER OF SOLUTIONS OF DIOPHANTINE QUADRATIC EQUATIONS WITH TWO UNKNOWNS IN \mathbb{Z} AND \mathbb{N}

Abstract

In this short note we study the existence and number of solutions in the set of integers (Z) and in the set of natural numbers (N) of Diophantine equations of second degree with two unknowns of the general form $a x^{2}-b y^{2}=c$.

Property 1: The equation $x^{2}-y^{2}=c$ admits integer solutions if and only if c belongs to $4 \mathbb{Z}$ or is odd.

Proof: The equation $(x-y)(x+y)=c$ admits solutions in \mathbb{Z} iff there exist c_{1} and c_{2} in \mathbb{Z} such that $x-y=c_{1}, x+y=c_{2}$, and $c_{1} c_{2}=c$. Therefore

$$
x=\frac{c_{1}+c_{2}}{2} \text { and } y=\frac{c_{2}-c_{1}}{2} .
$$

But x and y are integers if and only if $c_{1}+c_{2} \in 2 \mathbb{Z}$, i.e.:

1) or c_{1} and c_{2} are odd, then c is odd (and reciprocally).
2) or c_{1} and c_{2} are even, then $c \in 4 \mathbb{Z}$.

Reciprocally, if $c \in 4 \mathbb{Z}$, then we can decompose up c into two even factors c_{1} and c_{2}, such that $c_{1} c_{2}=c$.

Remark 1:

Property 1 is true also for solving in \mathbb{N}, because we can suppose $c \geq 0$ \{in the contrary case, we can multiply the equation by (-1) \}, and we can suppose $c_{2} \geq c_{1} \geq 0$, from which $x \geq 0$ and $y \geq 0$.

Property 2: The equation $x^{2}-d y^{2}=c^{2}$ (where d is not a perfect square) admits an infinity of solutions in \mathbb{N}.

Proof: Let's consider $x=c k_{1}, k_{1} \in \mathbb{N}$ and $y=c k_{2}, k_{2} \in \mathbb{N}, c \in \mathbb{N}$. It results that $k_{1}^{2}-d k_{2}^{2}=1$, which we can recognize as being the Pell-Fermat's equation, which admits an infinity of solutions in $\mathbb{N},\left(u_{n}, v_{n}\right)$.

Therefore

$$
x_{n}=c u_{n}, y_{n}=c v_{n}
$$

constitute an infinity of natural solutions for our equation.
Property 3: The equation $a x^{2}-b y^{2}=c, c \neq 0$, where $a b=k^{2},(k \in \mathbb{Z})$, admits a finite number of natural solutions.

Proof: We can consider a, b, c as positive numbers, otherwise, we can multiply the equation by (-1) and we can rename the variables.

Let us multiply the equation by a, then we will have:

$$
\begin{equation*}
z^{2}-t^{2}=d \text { with } z=a x \in \mathbb{N}, t=k y \in \mathbb{N} \text { and } d=a c>0 . \tag{1}
\end{equation*}
$$

We will solve it as in property 1 , which gives z and t.
But in (1) there is a finite number of natural solutions, because there is a finite number of integer divisors for a number in \mathbb{N}^{*}. Because the pairs (z, t) are in a limited number, it results that the pairs $(z / a, t / k)$ also are in a limited number, and the same for the pairs (x, y).

Property 4: If $a x^{2}-b y^{2}=c$, where $a b \neq k^{2} \quad(k \in \mathbb{Z})$ admits a particular nontrivial solution in \mathbb{N}, then it admits an infinity of solutions in \mathbb{N}.

Proof: Let's consider:

$$
\left\{\begin{array}{l}
x_{n}=x_{0} u_{n}+b y_{0} v_{n} \tag{2}\\
y_{n}=y_{0} u_{n}+a x_{0} v_{n}
\end{array} \quad(n \in \mathbb{N})\right.
$$

where $\left(x_{0}, y_{0}\right)$ is the particular natural solution for the initial equation, and $\left(u_{n}, v_{n}\right)_{n \in \mathbb{N}}$ is the general natural solution for the equation $u^{2}-a b v^{2}=1$, called the solution Pell, which admits an infinity of solutions.

Then $a x_{n}^{2}-b y_{n}^{2}=\left(a x_{0}^{2}-b y_{0}^{2}\right)\left(u_{n}^{2}-a b v_{n}^{2}\right)=c$.
Therefore (2) verifies the initial equation.

