# Generalization of the Dependent Function in Extenics for Nested Sets with Common Endpoints to 2D-Space, 3D-Space, and generally to $n$-D-Space 

Florentin Smarandache<br>University of New Mexico<br>Mathematics and Science Department 705 Gurey Ave.<br>Gallup, NM 87301, USA<br>E-mail: smarand@unm.edu


#### Abstract

.

In this paper we extend Prof. Yang Chunyan and Prof. Cai Wen's dependent function of a point $P$ with respect to two nested sets $X_{0} \subset X$, for the case the sets $X_{0}$ and $X$ have common ending points, from 1Dspace to $n$ - $D$-space. We give several examples in $2 D$ - and $3 D$-spaces. When computing the dependent function value $k$ (.) of the optimal point $O$, we take its maximum possible value.

Formulas for computing $k(O)$, and the geometrical determination the Critical Zone are also given.


1. Principle of Dependent Function of a point $P(x)$ with respect to a nest of two sets $X_{0} \subset X$, i.e. the degree of dependence of point $P$ with respect to the nest of the sets $X_{0} \subset X$, is the following.

The dependent function value, $k(x)$, is computed as follows:

- the extension distance between the point P and the larger set's closest frontier, divided by the extension distance between the frontiers of the two sets \{both extension distances are taken on the line/geodesic that passes through the point $P$ and the optimal/attracting point $O$;;
- the dependent function value is positive if point $P$ belongs to the larger set, and negative if point $P$ is outside of the larger set.

2. Dependent Function Formula for nested sets having common ending points in 1D-Space.

For two nested sets $X_{0} \subset X$ from the one-dimensional space of real numbers $R$, with $X_{0}$ and $X$ having common endpoints, the Dependent Function $K(x)$, which gives the degree of dependence of a point $x$ with respect to this pair of included 1D-intervals, was defined by Yang Chunyan and Cai Wen in [2] as:

$$
K(x)=\left\{\begin{array}{c}
\frac{\rho(x, X)}{\rho(x, X)-\rho\left(x, X_{0}\right)} \quad \rho(x, X)-\rho\left(x, X_{0}\right) \neq 0, x \in X  \tag{1}\\
-\rho\left(x, X_{0}\right)+1 \quad \rho(x, X)-\rho\left(x, X_{0}\right)=0, x \in X_{0} \\
-\rho(x, X) \quad \rho(x, X)-\rho(x, X 0)=0, x \notin X_{0, x \in X} \\
\frac{\rho(x, X)}{\rho(x, X)-\rho(x, \hat{X})} \quad \rho(x, X)-\rho(x, \hat{X}) \neq 0, x \in R-X \\
-\rho(x, \hat{X})-1 \quad \rho(x, X)-\rho(x, \hat{X})=0, x \in R-X
\end{array}\right.
$$

where $X_{0}=\left\langle a_{0}, b_{0}\right\rangle, x=\langle a, b\rangle, \hat{X}=\langle c, d\rangle$, and $x_{0} \subset x \subset \hat{X}$.
3. $n$ - $D$-Dependent Function Formula for two nested sets having no common ending points.

The extension $n$ - $D$-dependent function $k($.$) of a point P$, which represents the degree of dependence of the point $P$ with respect to the nest of the two sets $X_{0} \subset X$, is:

$$
\begin{equation*}
k(P)=\frac{\rho(P, \text { BiggerSet })}{\rho(P, \text { BiggerSet })-\rho(P, \text { SmallerSet })}=\frac{\rho_{n D}(P, X)}{\rho_{n D}(P, X)-\rho_{n D}\left(P, X_{0}\right)}= \pm \frac{\left|P P_{2}\right|}{\left|P P_{2}\right|-\left|P P_{1}\right|}= \pm \frac{\left|P P_{2}\right|}{\left|P_{1} P_{2}\right|} \tag{2}
\end{equation*}
$$

In other words, the extension $n$ - $D$-dependent function $k($.$) of a point P$ is the $n-D$-extension distance between the point $P$ and the closest frontier of the larger set $X$, divided by the $n-D-$ extension distance between the frontiers of the two nested sets $X$ and $X_{0}$; all these n-Dextension distances are taken along the line (or geodesic) $O P$.

## 4. n-D-Dependent Function Formula for two nested sets having common ending points.

We generalize the above formulas (1) and (2) to an $n$ - $\boldsymbol{D}$ Dependent Function of a point $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with respect to the nested sets $X_{0}$ and $X$ having common endpoints, $X_{0} \subset X$, from the universe of discourse $U$, in the $n$ - $D$-space:

### 5.1. Example 1 of nested rectangles with one common side.

We have a factory piece whose desired 2D-dimensions should be $20 \mathrm{~cm} \times 30 \mathrm{~cm}$, and acceptable 2Ddimensions $22 \mathrm{~cm} \times 32 \mathrm{~cm}$, but the two rectangles have common ending points. We define the
extension 2D-distance, and then we compute the extension 2D-dependent function. Let's do an extension 2D-diagram:


## Diagram 1.

The Critical Zone in the top, down, and left sides of the Diagram 1 as the same as for the case when the two pink and black rectangles have no common ending points. But on the right-hand side the Critical Zone is delimitated by the a blue curve in the middle and the blue dotted lines in the upper and lower big rectangle's corners.

The dependent function of the points $Q, Q_{1}, Q_{2}$ is respectively:
$k(Q)=\left|Q Q_{1}\right|+1$, and $k\left(Q_{1}\right)=1$ (if $Q_{1} \in A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ ) or 0 (if $\left.Q_{1} \notin A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right)$, and $k\left(Q_{2}\right)=-\left|Q_{2} Q_{1}\right|=-1$, (4)
where / $M N$ / means the geometrical distance between the points $M$ and $N$.
The dependent function of point $P$ is normally computing:

$$
\begin{equation*}
k(P)=\frac{\left|P P_{2}\right|}{\left|P_{1} P_{2}\right|} . \tag{5}
\end{equation*}
$$

### 5.2. Example 2 of nested rectangles with two common sides.



We observe that the Critical Zone changes dramatically in the places where the common ending points occur, i.e. on the top and respectively left-hand sides. The Critical Zone is delimitated by blue curves and lines on the top and respectively left-hand sides.

Now, the dependent function of point $P$ is different from the Diagram 1:

$$
\begin{equation*}
k(P)=\left|P P^{\prime}\right|+1 . \tag{6}
\end{equation*}
$$

The dependent function of the optimal point $O$ should be the maximum possible value.
Therefore,

$$
\begin{equation*}
k(O)=\max \left\{\left|O T_{1}\right|+1,\left|O T_{2}\right|+1,\left|O P^{\prime}\right|+1,\left|O C^{\prime}\right|+1, \frac{\left|O T_{7}\right|}{\left|T_{6} T_{7}\right|}, \frac{\left|O T_{5}\right|}{\left|T_{4} T_{5}\right|}, \frac{|O A|}{\left|T_{3} A\right|}, \text { etc. }\right\} . \tag{7}
\end{equation*}
$$

### 5.3. Example 3 of nested circles with one common ending point.

Assume the desirable circular factory piece radius is 6 cm and acceptable is 8 cm , but they have a common ending point $P^{\prime}$.


The Critical Zone is between the green and blue circles, together with the blue line segment $P^{\prime \prime} P^{\prime}$ (this line segment resulted from the fact the $P^{\prime}$ is a common ending point of the red and green circles).

The dependent function values for the following points are:
$k(P)=\left|P P^{\prime}\right|+1 ;$
$k\left(P^{\prime}\right)=1$ (if $P^{\prime}$ belongs to the red circle), or $O$ (if $P^{\prime}$ does not belong to the red circle);
$k\left(P^{\prime \prime}\right)=\left|P^{\prime \prime} P^{\prime}\right| ;$
$k(O)=\max \left\{\left|O P^{\prime}\right|+1 ; \frac{\left|O T_{4}\right|}{\left|T_{3} T_{4}\right|}\right.$,
where $T_{3}$ lies arbitrary on the red circle, but $T_{3} \neq P^{\prime}$, and $T_{4}$ lies on the green circle but $T_{4}$ belongs to the line (or geodesic) $O T_{3}$ \}.
5.4. Example 4 of nested triangles with one common bottom side.


Diagram 4.
The Critical Zone is between the green and blue dotted triangle to the left-hand and right-hand sides, while at the bottom side the Critical Zone is delimitated by the blue curve in the middle and the blue small oval triangles $A^{\prime \prime} A A^{\prime}$ and respectively $B^{\prime \prime} B B^{\prime}$.

The dependent function values of the following points are given below:
$k(P)=\frac{\left|P P^{\prime \prime}\right|}{\left|P^{\prime} P^{\prime \prime}\right|}>1 ; k\left(P^{\prime}\right)=1 ; k\left(P^{\prime \prime}\right)=0 ; k\left(P^{\prime \prime \prime}\right)=-1$.
Similarly: $k(Q)=\frac{\left|Q Q^{\prime \prime}\right|}{\left|Q^{\prime} Q^{\prime \prime}\right|}>1 ; k\left(Q^{\prime}\right)=1 ; k\left(Q^{\prime \prime}\right)=0 ; k\left(Q^{\prime \prime \prime}\right)=-1$.
With respect to the bottom common side (where the line segment $A B$ lies on line segment $A^{\prime} B^{\prime}$ ) one has:
$k(T)=\left|T S^{\prime \prime}\right|+1 ; k\left(S^{\prime \prime}\right)=1$ (if $S^{\prime \prime}$ belongs to the red triangle $A B C$ ), or $O$ (if $S^{\prime \prime}$ does not belong to the red triangle $A B C) ; k(S)=\left|S S^{\prime \prime}\right| ; k\left(S^{\prime}\right)=-1$.
$k(O)=\max \left\{\max \left(\mid O S_{S "[A B]}^{" \mid+1}\right) ; \quad \max \left(\frac{\left|O P^{"}\right|}{\left|P^{\prime} P^{\prime \prime}\right|}\right) \quad\right\}$.
$\underset{\substack{P \\ P \\ P^{\prime} \in O P D^{\prime}}}{ }(A C] \cup[C B], P^{n} \in\left[A^{\prime} C^{\prime}\right] \cup\left[C^{\prime} B^{\prime}\right]$ $P^{\prime} \in O P^{\prime \prime}$
OPP"line/ geodesic
5.5. Example 5 in 3D-Space of two prisms having a common face.


The Critical Zone (the zone where the extension dependent function takes values between 0 and -1) envelopes the larger green prism $A B C D E F G H$ at an equal distance from it as the distance between the red prism $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime} G^{\prime} H^{\prime}$ and the green prism $A B C D E F G H$ with respect to the faces $A B C D, A D H E, B C G F, E F G H$, and $A B F E$ (because these green faces and their corresponding
red faces $A^{\prime} B^{\prime} C^{\prime} D^{\prime}, A^{\prime} D^{\prime} H^{\prime} E^{\prime}, B^{\prime} C^{\prime} G^{\prime} F^{\prime}, E^{\prime} F^{\prime} G^{\prime} H^{\prime}$, and respectively $A^{\prime} B^{\prime} F^{\prime} E^{\prime}$ have no common points).

But the green face $D C G H$ contains the red face $D^{\prime} C^{\prime} G^{\prime} H^{\prime}$, therefore for all their common points (i.e. all points inside of and on the rectangle $D^{\prime} C^{\prime} G^{\prime} H^{\prime}$ ) the extension dependent function has wild values. $D^{\prime} C^{\prime} G^{\prime} H^{\prime}$ entirely lies on $D C G H$. The Critical Zone related to the right-hand green face $D C G H$ and the red face $D^{\prime} C^{\prime} G^{\prime} H^{\prime}$ is the solid bounded by the blue continuous and dashed curves on the right-hand side.

In general, let's consider two $n-D$ sets, $S_{1} \subset S_{2}$, that have common ending points (on their frontiers). Let's note by $C_{E}$ their common ending point zone. Then:

The Dependent Function Formula for computing the value of the Optimal Point O is

We can define the Critical Zone in the sides where there are common ending points as:
$Z_{C 1}=\left\{P(x) \mid P \in U-S_{2}, 0<d\left(P, P^{\prime \prime}\right) \leq 1, P^{\prime \prime} \in \operatorname{Fr}\left(S_{1}\right) \cap \operatorname{Fr}\left(S_{2}\right)\right.$ and $\left.P^{\prime \prime} \in O P\right\}$,
where $d\left(P, P^{\prime \prime}\right)$ is the classical geometrical distance between the points $P$ and $P^{\prime \prime}$.
And for the sides which have no common ending points, the Critical Zone is:
$Z_{C 2}=\left\{P(x) \mid P \in U-S_{2}, 0<d\left(P, P^{\prime \prime}\right) \leq d\left(P^{\prime \prime} P^{\prime}\right)\right.$, where $P^{\prime \prime} \in F r\left(S_{2}\right)$ and $P^{\prime} \in F r\left(S_{1}\right)$ and $\left.P^{\prime \prime} \in O P\right\}$.
Whence, the total Critical Zone is: $Z_{C}=Z_{C 1} \cup Z_{C 2}$.

## References:

[1] Cai Wen. Extension Set and Non-Compatible Problems [J]. Journal of Scientific Exploration, 1983, (1): 83-97.
[2] Yang Chunyan, Cai Wen. Extension Engineering [M]. Beijing: Public Library of Science, 2007.
[3] F. Smarandache, Generalizations of the Distance and Dependent Function in Extenics to 2D, 3D, and n-D, viXra.org, http://vixra.org/abs/1206.0014 and http://vixra.org/pdf/1206.0014v1.pdf, 2012.
[4] F. Smarandache, V. Vlădăreanu, Applications of Extenics to 2D-Space and 3D-Space, viXra.org, http://vixra.org/abs/1206.0043 and http://vixra.org/pdf/1206.0043v2.pdf, 2012.

