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GENERALIZATION OF AN ER’S MATRIX METHOD FOR 
COMPUTING 

Er’s matrix method for computing Fibonacci numbers and their sums can be 
extended to the s-additive sequence: 

g− s+1 = g− s+ 2 = ... = g−1 = 0 ,  g0 = 1 ,   
and   

gn = gn− i
i=1

s

∑  for n > 0 . 

For example, if we note Sn = gj
j =1

n−1

∑ , we define two (s + 1) × (s + 1) matrixes such 

that: 

Bn =

1         0        0    ...  0          0

Sn gn       gn−1  ... gn− s+2   gn− s+1

:        :        :     ...  :          :

Sn− s+1  gn− s+1  gn− s  ... gn− 2s+ 3  gn−2s+2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, 

n ≥ 1, and  

  M =

1     0     0 ...  0

1     1     1  ...  0

:     :     :   ...  :

1     1    0  ...   1

1     1    0  ...   0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

,   

thus, we have analogously: 
1

1 ,  n r c r c
nB M M M M+ +

+ = = ⋅ ,  
whence  

Sr +c = Sr + grSc + gr −1Sc−1 + ... + gr − s+1Sc− s+1 ,   
gr +c = grgc + gr −1gc−1 + ... + gr − s+1gc− s+1 ,  

and for r = c = n  it results:  
S2n = Sn + gnSn + gn−1Sn−1 + ... + gn− s+1Sn− s+1 ,   
g2n = g

n

2 + g
n−1

2 + ...+ g
n−s+1

2 ; 
for  r = n ,  c = n − 1 , we find: 

g2n−1 = gngn−1 + gn−1gn− 2 + ... + gn− s+1gn− s , etc.  
S2n−1 = Sn + gnSn−1 + gn−1Sn−2 + ... + gn− s+1Sn− s  
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Whence we can construct a similar algorithm as M. C. Er for computing s-
additive numbers and their sums. 
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