## FLORENTIN SMARANDACHE Generalizations of The Theorem of Ceva

In Florentin Smarandache: "Collected Papers", vol. I (second edition). Ann Arbor (USA): InfoLearnQuest, 2007.

## GENERALIZATIONS OF THE THEOREM OF CEVA

In these paragraphs one presents three generalizations of the famous theorem of Céva, which states:
"If in a triangle $A B C$ one plots the convergent straight lines

$$
A A_{1}, B B_{1}, C C_{1} \text { then } \frac{\overline{A_{1} B}}{\overline{A_{1} C}} \cdot \frac{\overline{B_{1} C}}{\overline{B_{1} A}} \cdot \frac{\overline{C_{1} A}}{\overline{C_{1} B}}=-1 " .
$$

Theorem: Let us have the polygon $A_{1} A_{2} \ldots A_{n}$, a point $M$ in its plane, and a circular permutation
$p=\left(\begin{array}{ccccc}1 & 2 & \ldots & n-1 & n \\ 2 & 3 & \ldots & n & 1\end{array}\right)$. One notes $M_{i j}$ the intersections of the line $A_{i} M$ with the lines $A_{i+s} A_{i+s+1}, \ldots, A_{i+s+t-1} A_{i+s+t}$ (for all $i$ and $j, j \in\{i+s, \ldots, i+s+t-1\}$ ).

If $M_{i j} \neq A_{n}$ for all the respective indices, and if $2 s+t=n$, one has:
$\prod_{i, j=1, i+s}^{n, i+s+t-1} \frac{\overline{M_{i j} A_{j}}}{\overline{M_{i j} A_{p}(j)}}=(-1)^{n}$ ( $s$ and $t$ are natural non zero numbers) .
Analytical demonstration: Let $M$ be a point in the plain of the triangle $A B C$, such that it satisfies the conditions of the theorem. One chooses a Cartesian system of axes, such that the two parallels with the axes which pass through $M$ do not pass by any point $A_{i}$ (this is possible).

One considers $M(a, b)$, where $a$ and $b$ are real variables, and $A_{i}\left(X_{i}, Y_{i}\right)$ where $X_{i}$ and $Y_{i}$ are known, $i \in\{1,2, \ldots, n\}$.

The former choices ensure us the following relations:

$$
X_{i}-a \neq 0 \text { and } Y_{i}-b \neq 0 \text { for all } i \in\{1,2, \ldots, n\} .
$$

The equation of the line $A_{i} M(1 \leq i \leq n)$ is:

$$
\frac{x-a}{X_{i}-a}-\frac{y-b}{Y_{i}-b} . \text { One notes that } d\left(x, y ; X_{i}, Y_{i}\right)=0
$$

One has

$$
\frac{\overline{M_{i j} A_{j}}}{\overline{M_{i j} A_{p(j)}}}=\frac{\delta\left(A_{j}, A_{i} M\right)}{\delta\left(A_{p(j)}, A_{i} M\right)}=\frac{d\left(X_{j}, Y_{j} ; X_{i}, Y_{i}\right)}{d\left(X_{p(j)}, Y_{p(j)} ; X_{i}, Y_{i}\right)}=\frac{D(j, i)}{D(p(j), i)}
$$

where $\delta(A, S T)$ is the distance from $A$ to the line $S T$, and where one notes with $D(a, b)$ for $d\left(X_{a}, Y_{a} ; X_{b}, Y_{b}\right)$.

Let us calculate the product, where we will use the following convention: $a+b$ will mean $\underbrace{p(p(\ldots p}_{\text {b times }}(a) \ldots))$, and $a-b$ will mean $\underbrace{p^{-1}\left(p^{-1}\left(\ldots p^{-1}\right.\right.}_{\text {b times }}(a) \ldots))$

$$
\prod_{j=i+s}^{i+s+t-1} \frac{\overline{M_{i j} A_{j}}}{\overline{M_{i j} A_{j+1}}}=\prod_{j=i+s}^{i+s+t-1} \frac{D(j, i)}{D(j+1, i)}=
$$

$$
\begin{aligned}
& =\frac{D(i+s, i)}{D(i+s+1, i)} \cdot \frac{D(i+s+1, i)}{D(i+s+2, i)} \cdots \frac{D(i+s+t-1, i)}{D(i+s+t, i)}= \\
& =\frac{D(i+s, i)}{D(i+s+t, i)}=\frac{D(i+s, i)}{D(i-s, i)}
\end{aligned}
$$

The initial product is equal to:

$$
\begin{aligned}
& \prod_{i=1}^{n} \frac{D(i+s, i)}{D(i-s, i)}=\frac{D(1+s, 1)}{D(1-s, 1)} \cdot \frac{D(2+s, 2)}{D(2-s, 2)} \cdots \frac{D(2 s, s)}{D(n, s)} . \\
& \cdot \frac{D(2 s+2, s+2)}{D(2, s+2)} \cdots \frac{D(2 s+t, s+t)}{D(t, s+t)} \cdot \frac{D(2 s+t+1, s+t+1)}{D(t+1, s+t+1)} . \\
& \cdot \frac{D(2 s+t+2, s+t+2)}{D(t+2, s+t+2)} \cdots \frac{D(2 s+t+s, s+t+s)}{D(t+s, s+t+s)}= \\
& =\frac{D(1+s, 1)}{D(1,1+s)} \cdot \frac{D(2+s, 2)}{D(2,2+s)} \cdots \frac{D(2 s+t, s+t)}{D(s+t, 2 s+t)} \cdots \frac{D(s, n)}{D(n, s)}= \\
& =\prod_{i=1}^{n} \frac{D(i+s, i)}{D(i, i+s)}=\prod_{i=1}^{n}\left(-\frac{P(i+s)}{P(i)}\right)=(-1)^{n}
\end{aligned}
$$

because:

$$
\frac{D(r, p)}{D(p, r)}=\frac{\frac{X_{r}-a}{X_{p}-a}-\frac{Y_{r}-b}{Y_{p}-b}}{\frac{X_{p}-a}{X_{r}-a}-\frac{Y_{p}-b}{Y_{r}-b}}=-\frac{\left(X_{r}-a\right)\left(Y_{r}-b\right)}{\left(X_{p}-a\right)\left(Y_{p}-b\right)}=-\frac{P(r)}{P(p)},
$$

The last equality resulting from what one notes: $\left(X_{t}-a\right)\left(Y_{t}-b\right)=P(t)$. From (1) it results that $P(t) \neq 0$ for all $t$ from $\{1,2, \ldots, n\}$. The proof is completed.

## Comments regarding the theorem:

$t$ represents the number of lines of a polygon which are intersected by a line $A_{i_{0}} M$; if one notes the sides $A_{i} A_{i+1}$ of the polygon, by $a_{i}$, then $s+1$ represents the order of the first line intersected by the line $A_{1} M$ (that is $a_{s+1}$ the first line intersected by $A_{1} M$ ).

Example: If $s=5$ and $t=3$, the theorem says that :

- the line $A_{1} M$ intersects the sides $A_{6} A_{7}, A_{7} A_{8}, A_{8} A_{9}$.
- the line $A_{2} M$ intersects the sides $A_{7} A_{8}, A_{8} A_{9}, A_{9} A_{10}$.
- the line $A_{3} M$ intersects the sides $A_{8} A_{9}, A_{9} A_{10}, A_{10} A_{11}$, etc.

Observation: The restrictive condition of the theorem is necessary for the existence of the ratios $\frac{\overline{M_{i j} A_{j}}}{\overline{M_{i j} A_{p(j)}}}$.

Consequence 1: Let us have a polygon $A_{1} A_{2} \ldots A_{2 k+1}$ and a point $M$ in its plan. For all $i$ from $\{1,2, \ldots, 2 k+1\}$, one notes $M_{i}$ the intersection of the line $A_{i} A_{p(i)}$ with the line which passes through $M$ and by the vertex which is opposed to this line. If $M_{i} \notin\left\{A_{i}, A_{p(i)}\right\}$ then one has: $\prod_{i=1}^{n} \frac{\overline{M_{i} A_{i}}}{\overline{M_{i} A_{p(i)}}}=-1$.

The demonstration results immediately from the theorem, since one has $s=k$ and $t=1$, that is $n=2 k+1$.

The reciprocal of this consequence is not true.
From where it results immediately that the reciprocal of the theorem is not true either.

Counterexample:
Let us consider a polygon of 5 sides. One plottes the lines $A_{1} M_{3}, A_{2} M_{4}$ and $A_{3} M_{5}$ which intersect in $M$.

Let us have $K=\frac{\overline{M_{3} A_{3}}}{\overline{M_{3} A_{4}}} \cdot \frac{\overline{M_{4} A_{4}}}{\overline{M_{4} A_{5}}} \cdot \frac{\overline{M_{5} A_{5}}}{\overline{M_{5} A_{1}}}$
Then one plots the line $A_{4} M_{1}$ such that it does not pass through $M$ and such that it forms the ratio:
(2) $\frac{\overline{M_{1} A_{1}}}{\overline{M_{1} A_{2}}}=1 / K$ or $2 / K$. (One chooses one of these values, for which $A_{4} M_{1}$ does not pass through $M$ ).

At the end one traces $A_{5} M_{2}$ which forms the ratio $\frac{\overline{M_{2} A_{2}}}{\overline{M_{2} A_{3}}}=-1$ or $-\frac{1}{2}$ in function of (2). Therefore the product:

$$
\prod_{i=1}^{5} \xlongequal[\overline{M_{i} A_{p(i)}}]{\overline{M_{i}}} \text { without which the respective lines are concurrent. }
$$

Consequence 2: Under the conditions of the theorem, if for all $i$ and $j, j \notin\left\{i, p^{-1}(i)\right\}$, one notes $M_{i j}=A_{i} M \cap A_{j} A_{p(j)}$ and $M_{i j} \notin\left\{A_{j}, A_{p(j)}\right\}$ then one has:

$$
\begin{aligned}
& \prod_{i, j=1}^{n} \frac{\overline{M_{i j} A_{j}}}{\overline{M_{i j} A_{p(j)}}}=(-1)^{n} . \\
& j \notin\left\{i, p^{-1}(i)\right\}
\end{aligned}
$$

In effect one has $s=1, t=n-2$, and therefore $2 s+t=n$.

Consequence 3: For $n=3$, it comes $s=1$ and $t=1$, therefore one obtains (as a particular case ) the theorem of Céva.

