FLORENTIN SMARANDACHE Geometric Conjecture

In Florentin Smarandache: "Collected Papers", vol. II. Chisinau (Moldova): Universitatea de Stat din Moldova, 1997.

GEOMETRIC CONJECTURE

a) Let M be an interior point in an $A_{1} A_{2} \ldots A_{n}$ convex polygon and P_{i} the projection of M on

$$
A_{i} A_{i+1} \mathrm{i}=1,2,3, \ldots, \mathrm{n}
$$

Then,

$$
\sum_{i=1}^{n} \overline{M A}_{i} \geq c \sum_{i=1}^{n} \overline{M P}_{i}
$$

where c is a constant to be found.
For $n=3$, it was conjectured by Erdōs in 1935 and solved by Mordell in 1937 and Kazarinoff in 1945. In this case $c=2$ and the result is called the Erdos-Mordell Theorem.

Question: What happens in 3 -space when the polygon is replaced by a polyhedron?
b) More generally: If the projections P_{i} are considered under a given oriented angle $\alpha \neq 90$ degrees, what happens with the Erdös-Mordell Theorem and the various generalizations?
c) In 3 -space, we make the same generalization for a convex polyhedron

$$
\sum_{i=1}^{n} \overline{M A}_{i} \geq c_{1} \sum_{j=1}^{m} \overline{M P}_{j}
$$

where $P_{j}, 1 \leq j \leq m$, are projections of M on all the faces of the polyhedron.
Futhermore,

$$
\sum_{i=1}^{n} \overline{M A}_{i} \geq c_{2} \sum_{k=1}^{r} \overline{M T}_{k}
$$

where $T_{k}, 1 \leq k \leq r$, are projections of M on all sides of the polyhedron and c_{1} and c_{2} are constants to be determined.
[Kazarinoff conjectured that for the tetrahedron

$$
\sum_{i=1}^{4} \overline{M A}_{i} \geq 2 \sqrt{2} \sum_{i=1}^{4} \overline{M P}_{i}
$$

and this is the best possible.

References

[1] P.Erdös, Letter to T.Yau, August, 1995.
[2] Alain Bouvier et Michel George, <Dictionnaire des Mathématiques>, Press Universitaires de France, Paris, p. 484.

