
Information Sciences 181 (2011) 1818–1835
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Evidence supporting measure of similarity for reducing the complexity
in information fusion q

Xinde Li a,⇑, Jean Dezert b, Florentin Smarandache c, Xinhan Huang d

a Key Laboratory of Measurement and Control of CSE (School of Automation, Southeast University), Ministry of Education, Nanjing 210096, China
b ONERA (The French Aerospace Lab), 29 Av. de la Division Leclerc, 92320 Châtillon, France
c Chair of Mathematics and Sciences Department, University of New Mexico, 200 College Road, Gallup, NM 87301, USA
d Image Processing and Intelligent Control Key Laboratory of Education Ministry of China, Huazhong University of Science and Technology, Wuhan 430074, China

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 28 October 2010

Keywords:
Information fusion
Belief function
Complexity reduction
Robot perception
DSmT
Measure of similarity
Distance
Lattice
0020-0255/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.ins.2010.10.025

q This work was supported by National Natural
Province under Grant (No. BK2010403), The Public F
Grant (No. 200902), The Science and Technology In
Foundation of China under Grant (No. 20100169001
⇑ Corresponding author.

E-mail addresses: xindeli@seu.edu.cn (X. Li), je
Huang).
This paper presents a new method for reducing the number of sources of evidence to combine
in order to reduce the complexity of the fusion processing. Such a complexity reduction is
often required in many applications where the real-time constraint and limited computing
resources are of prime importance. The basic idea consists in selecting, among all sources
available, only a subset of sources of evidence to combine. The selection is based on an evi-
dence supporting measure of similarity (ESMS) criterion which is an efficient generic tool
for outlier sources identification and rejection. The ESMS between two sources of evidence
can be defined using several measures of distance following different lattice structures. In
this paper, we propose such four measures of distance for ESMS and we present in details
the principle of Generalized Fusion Machine (GFM). Then we apply it experimentally to
the real-time perception of the environment with a mobile robot using sonar sensors. A com-
parative analysis of results is done and presented in the last part of this paper.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Information fusion (IF) has gained more and more interests in the scientific community since the end of the 90s with the
development of sophisticated multi-sensor and hybrid (involving human feedbacks in the loop) systems in many fields of appli-
cations (such as robotics, defense, security, medicine). IF appears through many scientific international conferences and work-
shops [10]. The main theories useful for information fusion are Probability Theory [18,28] (and more recently Imprecise
Probability Theory [41]), Possibility Theory [7] (based on Fuzzy Sets Theory [48]), Neutrosophic Set Theory [17] and belief func-
tion theories (such as Dempster–Shafer Theory (DST) [32] and more recently Dezert–Smarandache Theory (DSmT) [34–36]).

In this work, we concentrate our attention on belief function theories and specially on DSmT because of its ability to deal
efficiently with uncertain, imprecise, conflicting, quantitative and qualitative information. Basically, in DST, a basic belief
assignment (bba) m(�) is a mapping from the power set 2H (see Section 2.2 for details) of the frame of discernment H into
[0,1] such that
. All rights reserved.
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mð;Þ ¼ 0 and
X
X22H

mðXÞ ¼ 1:
In DST, H represents the set of exclusive and exhaustive possibilities for the solution of the problem under consideration. In
DSmT, H can be a set of possible nonexclusive elements and the definition of bba is extended to the lattice structures of
hyper-power set DH (see also Section 2.3 for a brief presentation and [6,9,36] for definitions, details and examples), and
to super-power set SH in UFT (Unification of Fusion Theories) [33,35]. In general, m(�) is not a measure of probability, except
in the case when its focal elements (that is, the elements which have a strictly positive mass of belief) are singletons; in such
case, m(�) is called a Bayesian bba [32] which can be considered as a subjective probability measure. In belief function the-
ories, the main information fusion problem consists in finding an efficient way for combining several sources of evidence
s1,s2, . . . ,sn characterized by their basic belief assignments (bba’s) m1(�),m2(�), . . . ,mn(�). These bba’s are defined on the same
fusion space, either 2H, DH, or SH depending on the underlying model associated with the nature of the frame H. The dif-
ficulty in information fusion arises from the fact that the sources can be conflicting (that is, one source assigns some beliefs
to a proposition A whereas another source assigns some beliefs to a proposition B, but A and B are known to be truly exclu-
sive (A \ B = ;)) and one needs a solution for dealing with conflicting information in the fusion. In DST, Shafer proposes
Dempster’s rule of combination, as the fusion operator, to combine sources of evidence whereas in DSmT the recommended
fusion operator is PCR5 (Proportional Conflict Redistribution # 5) rule of combination, see [32] and [36] for discussions and
comparisons of these rules. PCR5 is more complex than Demspter’s rule but it offers a better ability to deal with conflicting
information.

However, both rules become intractable in some applications having only low computational capacities (as in some
autonomous onboard systems by example) because their complexity increases drastically with the number n of sources
combined or with the size of the frame H, specially in the worst case (that is, when a strictly positive mass of belief is as-
signed to all elements of the fusion space). To avoid this problem, one can do: (1) to reduce the number of sources combined
and (2) to reduce the size of the frame H. In this paper, we propose a solution only for reducing the number of sources com-
bined. We are not concerned about the second aspect in our application of robot perception since in this application our
frame H has only two elements representing the emptiness or occupancy states of the grid cells of the sensed map of the
environment. To expect good performances of such a limited-resource fusion scheme, it seems natural to search and com-
bine altogether only the sources which are coherent (which are not too conflicting) according to a given measure of similar-
ity in terms of Dedekind’s lattice.

Such an idea has been already investigated by several authors who have proposed some distance measures between two
evidential sources in different fields of applications. For example, Tessem [38], in 1993, proposed the distance
dij ¼ maxhl2HjBetPiðhlÞ � BetPjðhlÞj according to the pignistic probability transform BetP(�). In 1997, Bauer [1] introduced
two other measures of error to take a decision based on pignistic probability distribution after approximation. In 1998,
Zouhal and Denoeux [49] also introduced a distance based on mean square error between pignistic probability. In 1999,
Petit-Renaud [29] defined a measure directly on the power set of H and proposed an error criterion between two belief
structures based on the generalized Hausdorff distance. In 2001, Jousselme et al. [13] proposed in DST framework, a new

distance measure dij ¼ 1� 1ffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þm2
2 � 2hm1;m2i

q
between two bba’s for measuring their similarity (closeness). In 2006,

Ristic and Smets [30,31] defined in the TBM (Transferable Belief Model) framework a TBM-distance between bba’s to solve
the association of uncertain combat ID declarations. These authors also recalled Bhattacharya’s distance

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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P
A2Fi

P
B2Fj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
miðAÞmjðBÞ

pq
between two bba’s. In 2006, Diaz et al. [5] proposed a new measure of similarity between

bba’s based on Tversky’s similarity measure [40]. Note that in belief function theories, the classical measures used in Prob-
ability Theory (for example, Kullback–Leibler’s (KL) distance [2]) couldnot be applied directly because bba’s werenot prob-
ability measures in general. Kaburlasos et al. [16,19] also proposed several valuable similarity measure functions based on an
inclusion measure [14,15] and a metric respectively. Dongrui Wu et al. proposed a vector similarity measure for linguistic
approximation, which was very useful in understanding the uncertainties associated with linguistic terms [45]. And then,
he also compared deeply ranking methods, similarity measures and uncertainty measures for interval type-2 fuzzy sets [46].

In this paper, we develop an Evidence Support Measure of Similarity (ESMS) in a generalized fusion space according to
different lattices structures [6,9,47] for reducing the number of sources of evidence to combine. This allows us to reduce
drastically the computational complexity of the fusion processing for the real-time implementation purpose. As shown in
the next sections, we propose several possible measures of distance for ESMS. The purpose of this paper is neither to select,
nor to justify, the best measure of distance for ESMS but only to illustrate from a real-time experiment with real data the
advantages of this new approach.

This paper is organized as follows. In Section 2, we briefly recall the main paradigms for dealing with uncertain informa-
tion. In Section 3, we give a general mathematical definition of ESMS between two basic belief assignments and some basic
properties of ESMS. In Section 4, we extend and present different possible ESMS functions (distance measures) fitting with
the different lattice structures listed in Section 2. A comparison of the performances of four possible distances is made
through a simple example in Section 5. The simulation presented in Section 6 shows in details how ESMS filter is used within
GFM scheme and its advantage. An application of ESMS filter in GFM for mobile robot perception with real-data (sonar sen-
sors measurements) is presented in Section 7 to show the advantages of the approach proposed here. The conclusion is given
in Section 8.
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2. The main paradigms for dealing with uncertainties

2.1. Probability Theory and Bayesian rule

Probability Theory [18] is the original theory for dealing with uncertainty. We will not present this theory in detail since
there exist dozens of classical books devoted to it, see for example [28]. We just recall that a random experiment is an exper-
iment (action) whose result is uncertain before it is performed and a trial is a single performance of the random experiment.
An outcome is the result of a trial and the sample space H is the set of all possible outcomes of the random experiment. An
event is the subset of the sample space H to which a probability measure can be assigned. Two events Ai and Aj are said
exclusive (disjoint) if Ai \ Aj = ;, "i – j, where the empty set ; represents the impossible event. The sure event is the sample
space H. Probability Theory is based on Set Theory and the measure theory on sets. The following axioms have been
identified as the necessary and sufficient condition for probability P(�) as a measure: Axiom (1) (nonnegativity) 0 6 P(A) 6 1,
Axiom (2) (unity) P(H) = 1, and Axiom (3) (finite additivity,1) if A1,A2, . . . ,An are disjoint events, then PðA1 [ A2 [ . . . [ AnÞ ¼Pn

i¼1PðAiÞ. Events which are subsets of the sample space are put in one-to-one correspondence with propositions in belief func-
tion theory [32] (pages 35–37). That’s why we use indifferently the same terminology for set, event or proposition in this paper.
The probabilistic inference is (usually) carried out according to Bayesian rule:
1 Ano
8B; PðBÞ > 0; PðAijBÞ ¼
PðAi \ BÞ

PðBÞ ¼ PðBjAiÞPðAiÞPn
j¼1PðBjAjÞPðAjÞ

; ð1Þ
where the sample space H has been partitioned into exhaustive and exclusive events A1,A2, . . . ,An, that is, Ai \ Aj = ;, (i – j)
and A1 [ A2 [ � � � [ An = H; P(�) is an a priori probability measure defined on H satisfying Kolmogorov’s axioms. In Bayesian
formula, it is assumed that the denominator is strictly positive. A generalization of this rule has been proposed by Jeffrey
[11,12] for working in circumstances where the parochialist assumption is not a reasonable assumption, i.e. when
P(BjB) = 1 is a fallacy, see [12,25] for details and examples.

Using the classical terminology adopted in belief function theories (DST or DSmT) and considering for example H = {A,B},
a discrete probability measure P(�) can be interpreted as a specific Bayesian belief mass m(�) such that
mðAÞ þmðBÞ ¼ 1: ð2Þ
2.2. Dempster–Shafer Theory (DST)

In DST [32], the frame of discernment H of the fusion problem under consideration consists in a discrete finite set of n
exhaustive and exclusive elementary hypotheses hi, that is, H = {h1,h2, . . . ,hn}. This is called Shafer’s model of the problem.
Such model assumes that an ultimate refinement of the problem is possible, exists and is achievable, so that elements hi,
i = 1,2, . . . ,n are precisely defined and identified in such a way that we are sure that they are truly exclusive and exhaustive
(closed-world assumption). The set of all subsets of H is called the power set of H and is denoted 2H. Its cardinality is 2jHj.
Since 2H is closed under [ and all hi, i = 1,2, . . . ,n are exclusive, it defines a Boolean algebra. All composite propositions built
from elements of H with [ operator such that:

(1) ;,h1, . . . ,hn 2 2H;
(2) If A, B 2 2H, then A [ B 2 2H;
(3) No other elements belong to 2H, except those obtained by using rules (1) or (2).

Shafer defines a basic belief assignment (bba), also called mass function, as a mapping m(�): 2H ? [0,1] satisfying m(;) = 0
and the normalization condition. Typically, when H = {A,B} and Shafer’s model holds, in DST one works with m(�) such that
mðAÞ þmðBÞ þmðA [ BÞ ¼ 1; ð3Þ
m(A [ B) allows us to assign some beliefs to the disjunction A [ B which represents the ignorance in choosing either A or B.
From this simple example, one clearly sees the ability of DST in offering a better model for a total ignorant/vacuous source of
information which is obtained by setting m(A [ B) = 1. For Probability Theory, one would be forced to adopt the principle of
insufficient reason (also called the principle of indifference) to take m(A) = m(B) = 1/2 as default belief mass for representing
a total ignorant body of evidence.

In DST framework, the combination of two belief assignments m1(�) and m2(�) is done with Dempster’s rule of combina-
tion. This rule is nothing but a normalized version of the conjunctive rule in order to remove the total conflicting mass [32].
Dempster’s rule is defined if and only if the two sources of evidence are not fully conflicting, that is, whenP

X1;X2 2 2H

X1 \ X2 ¼ ;

m1ðX1Þm2ðX2Þ – 1 and it is mathematically defined by m(;) = 0 and for X – ; by
ther axiom related to the countable additivity can be also considered as the fourth axiom of Probability Theory.
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mðXÞ ¼

P
X1 ;X222H

X1\X2¼X

m1ðX1Þm2ðX2Þ

1�
P

X1 ;X222H

X1\X2¼;
m1ðX1Þm2ðX2Þ

: ð4Þ
2.3. Dezert–Smarandache Theory (DSmT)

In DSmT framework [34–36], the frame H = {h1,h2, . . . ,hn} is a finite set of n exhaustive elements which are not necessarily
exclusive. The principle of the third excluded middle and Shafer’s model are refuted in DSmT (but can be introduced if needed
depending on the model of the frame one wants to deal with). For a wide class of fusion problems, this is because the nature of
hypotheses can be only a vague and imprecise or a crude approximation of the reality and no ultimate refinement is achievable.
As a simple example, if we consider two suspects, Peter (P) and Mary (M), in some criminal investigations, it is possible that Peter
has committed the crime alone, as well as Mary, or maybe Peter and Mary have committed the crime together. In that case, one
has to consider the possibility for P \M – ;, but there is no way to refine the original frameH = {P,M} into a finer one with exclu-
sive finer elements, i.e. H

0
= {Pn(P \M),P \M,Mn(P \M)}, because there is no physical meaning and no possible occurrence of

the atomic granules Pn(P \M) and Mn(P \M). In other words, the exclusive elements of the refined frame satisfying Shafer’s
model cannot always be well identified and precisely separated or may make no sense at all. This is why DSmT deals with non-
exclusive, partially overlapped or vague elements and refutes Shafer’s model and third excluded middle assumptions. DSmT
proposes to work in a fusion space defined by Dedekind’s lattice also called hyper-power set DH.

The hyper-power set is defined as the set of all composite propositions built from elements of H with \ and [ operators
such that [4]:

(1) ;, h1, . . . ,hn 2 DH;
(2) If A, B 2 DH, then A [ B 2 DH and A \ B 2 DH;
(3) No other elements belong to DH, except those obtained by using rules (1) or (2).

Following Shafer’s idea, Dezert and Smarandache define a (generalized) basic belief assignment (or mass) as a mapping
m(�): DH ? [0,1] such that:
mð;Þ ¼ 0 and
X

X2DH

mðXÞ ¼ 1:
Typically, when H = {A,B} and Shafer’s model doesnot hold, in DSmT one works with m(�) such that
mðAÞ þmðBÞ þmðA [ BÞ þmðA \ BÞ ¼ 1; ð5Þ
which appears actually as a direct and natural extension of (2) and (3).
Actually DSmT also offers an advantage to work with Shafer’s model or with any hybrid model if some integrity con-

straints between elements of the frame are known to be true and must be considered in the fusion. DSmT allows to solve
static or dynamic2 fusion problems in the same mathematical framework. For convenience, one denotes by GH the generalized
fusion space or generalized power set including integrity constraints (that is, exclusivity as well as possible nonexistence
restrictions between some elements of H), so that GH = DH when no constraint enters in the model, or GH = 2H when one wants
to work with Shafer’s model (see [34] for details and examples), or GH = H when working with probability model. If one wants
to work with the space closed under union [, intersection \, and complementarity C operators, then GH = SH, i.e. the super-
power set (see next section). A more general introduction of DSmT can be found in Chapter 1 of [36].

In DSmT, the fusion of two sources of evidence characterized by m1(�) and m2(�) is defined by mPCR5(;) = 0 and
"X 2 GHn{;}
mPCR5ðXÞ ¼ m12ðXÞ þ
X

Y2GH

X\Y¼;

m1ðXÞ2m2ðYÞ
m1ðXÞ þm2ðYÞ

þ m2ðXÞ2m1ðYÞ
m2ðXÞ þm1ðYÞ

" #
; ð6Þ
where all sets involved in the above formula are in the canonical form. m12ðXÞ � m\ðXÞ ¼
P

X1 ;X22GH

X1\X2¼X

m1ðX1Þm2ðX2Þ corre-

sponds to the conjunctive consensus on X between n = 2 sources and where all denominators are different from zero. If a
denominator is zero, that fraction is discarded. A general formula of PCR5 for the fusion of n > 2 sources has been proposed
in [35].
when the frame or its model change with time.
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2.4. Unification of fusion theory (UFT)

Recently Smarandache has proposed in [33,35] an extension of DSmT by considering a super-power set SH as the Boolean
algebra on H, that is, SH = (H,\,[,C(�)). In other words, SH is assumed to be closed under union [, intersection \, and com-
plement C(�) of sets respectively. With respect to the partial ordering relation, the inclusion # , the minimum element is the
empty set ;, and the maximal element is the total ignorance I ¼

Sn
i¼1hi. Since it extends the power set space through the

closed operation of \, [ and complement (�) operators, that is, UFT not only considers the nonexclusive situation among
the elements, but also considers the exclusive, exhaustive, nonexhaustive situation, and even the open and closed world.
Typically, when H = {A,B}, in UFT one works with m(�) such that,
3 Her
distanc

4 Thi
mðAÞ þmðBÞ þmðA \ BÞ þmðA [ BÞ þmð�ðAÞÞ þmð�ðBÞÞ þmð�ðAÞ [ �ðBÞÞ ¼ 1: ð7Þ
3. Evidence Support Measure of Similarity (ESMS)

Definition 3.1. Let’s consider a discrete and finite frame H and the fusion space GH including integrity constraints of the
model associated with H. The infinite set of basic belief assignments defined on GH is denoted by mGH . An Evidence Support
Measure of Similarity (ESMS) of two (generalized) basic belief assignments m1(�) and m2(�) in mGH is the function
Simð�; �Þ : mGH �mGH ! ½0;1� satisfying the following conditions:

(1) Symmetry: 8m1ð�Þ;m2ð�Þ 2 mGH ; Simðm1;m2Þ ¼ Simðm2;m1Þ;
(2) Consistency: 8mð�Þ 2 mGH ; Simðm;mÞ ¼ 1;
(3) Nonnegativity: 8m1ð�Þ;m2ð�Þ 2 mGH ; Simðm1;m2ÞP 0.

This definition has been given in [16] and we focus on it from the point of view of belief function. We will say that m2(�) is
more similar to m1(�) than m3(�) if and only if Sim(m1,m2) P Sim(m1,m3). The maximum degree of similarity is naturally ob-
tained when both bba’s m1(�) and m2(�) coincide, which is expressed by consistency condition (2). The equality
Sim(m1,m2) = 0 must be obtained when bba’s of two different sources are not assigned to the same focal elements, that is,
whenever m1(�) is focused on X 2 GH, which is denoted mX

1ð�Þ and corresponds to m1(X) = 1, and m2(�) is focused on Y 2 GH,
that is, m2ð�Þ ¼ mY

2ð�Þ such that m2(Y) = 1, with X \ Y = ;.
Obviously, for any bba m1ð�Þ 2 mGH (which is a jGHj-dimensional vector) and any small positive real number �, there exists

at least one bba m2ð�Þ 2 mGH for a given distance measure3 d(�, �) such that d(m1,m2) 6 �.

Definition 3.2. (Agreement of evidence): If there exist two basic belief assignments m1(�) and m2(�) in mGH such that for
some distance measure d(�, �), one has d(m1,m2) 6 � with � > 0, then m1(�) and m2(�) are said �-consistent with respect to the
distance d(�, �).

As we know, the smaller � > 0 is, the closer the distance d(m1,m2) between m1(�) and m2(�) is, that is, the more similar or
consistent m1(�) and m2(�) are.

From the previous definitions, ESMS is regarded as an interesting measure for evaluating the degree of similarity between
two sources. We propose to use ESMS as a preprocessing/thresholding technique to reduce the complexity of the combina-
tion of evidential sources by keeping in the fusion only the sources which are �-consistent. � is actually a threshold param-
eter which has to be tuned by the system designer and which depends on the application and computational resources.

4. Several possible ESMS

In this section we propose several possibilities for choosing an ESMS function Sim(�, �) defined in the general fusion space
GH, where all models, that is, probability, Dempster–Shafer (DS), Dezert–Smarandache (DSm) and Unification of Fusion may
be chosen as the working model, however, the two evidential sources, when computing their similarity, must simultaneously
work in the same model. The direct computation of their similarity between two sources respectively working in the differ-
ent models is not significant.

4.1. Euclidean ESMS function SimE(m1,m2)

Definition 4.1. Let H = {h1, . . . ,hn} (n > 1), m1(�) and m2(�) in mGH , Xi the ith (generic) element of GH and jGHj the cardinality of
GH. The following Euclidean ESMS function can be defined4:
e we donot specify the distance measure and keep it only as a generic distance. Actually d(�, �) can be any distance measure. In practice, the Euclidean
e is often used.
s is an extension of what is proposed in [13] for working in any fusion space, that is, in GH = 2H, GH = DH, or GH = SH. See [36], Chapter 1 for details.
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SimEðm1;m2Þ ¼ 1� 1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXjGH j

i¼1

ðm1ðXiÞ �m2ðXiÞÞ2
vuut ð8Þ
Theorem 4.1. SimE(m1,m2) defined in (8) is an ESMS function.

(See proof in Appendix)

4.2. Jousselme ESMS function SimJ(m1,m2)

Definition 4.2. Let m1(�) and m2(�) be two basic belief assignments in mGH provided by the sources of evidence S1 and S2.
Assumed5 a jGHj � jGHj positively definite matrix D = [Dij], where Dij = jXi \ Xjj/jXi [ Xjj, with Xi, Xj 2 GH. Then, Jousselme ESMS
function can be redefined from the Jousselme et al. measure [13]:
SimJðm1;m2Þ ¼ 1� 1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1 �m2ÞT Dðm1 �m2Þ

q
ð9Þ
or equivalently
SimJðm1;m2Þ ¼ 1� 1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þm2
2 � 2hm1;m2i

q
;

where hm1,m2i is the scalar product defined as:
hm1;m2i ¼
XjGH j

i¼1

XjGH j

j¼1

Dijm1ðXiÞm2ðXjÞ;
Xi, Xj 2 GH, i, j = 1, . . . ,s, jGHj.

Theorem 4.2. SimJ(m1,m2) defined in formula (9) is an ESMS function.

(See proof in Appendix).
Actually SimE(m1,m2) is nothing but a special case of SimJ(m1,m2) when taking D as the jGHj � jGHjidentity matrix.

4.3. Ordered ESMS function SimO(m1,m2)

The definition of the (partial) ordered ESMS function SimO(m1,m2) is similar to SimJ(m1,m2) but instead of using Jous-
selme’s matrix D = [Dij], where Dij = jXi \ Xjj/jXi [ Xjj, with Xi, Xj 2 GH, we choose the DSm matrix O = [Oij], where Oij = s(-
Xi \ Xj)/s(Xi [ Xj), and s(X) corresponds to the intrinsic informational content of the proposition X defined in details in [34]
(Chapter 3). s(X) is used for partially ordering the elements of GH. More precisely, s(X) is the sum of the inverse of the length
of the components of Smarandache’s code6 of X.

As a simple example, let’s take H = {h1,h2} with free DSm model (that is, when all elements are nonexclusive two-by-two),
then the partially7 ordered hyper-power set GH = DH is given by DH = {;,h1 \ h2,h1,h2,h1 [ h2}. As we know, s(;) = 0,
s(h1 \ h2) = 1/2, s(h1) = 1 + 1/2, s(h2) = 1 + 1/2 and s(h1 [ h2) = 1 + 1 + 1/2 since Smarandache’s codes of ;, h1, h2, h1 \ h2 and
h1 [ h2 are respectively given by {h�i} (empty code), {h1i, h12i}, {h2i, h12i}, {h12i} and {h1i, h12i, h2i}. The matrix O is defined by8
O ¼

sðh1\h2Þ
sðh1\h2Þ

sðh1\h2Þ
sðh1Þ

sðh1\h2Þ
sðh2Þ

sðh1\h2Þ
sðh1[h2Þ

sðh1\h2Þ
sðh1Þ

sðh1Þ
sðh1Þ

sðh1\h2Þ
sðh1[h2Þ

sðh1Þ
sðh1[h2Þ

sðh1\h2Þ
sðh2Þ

sðh1\h2Þ
sðh1[h2Þ

sðh2Þ
sðh2Þ

sðh2Þ
sðh1[h2Þ

sðh1\h2Þ
sðh1[h2Þ

sðh1Þ
sðh1[h2Þ

sðh2Þ
sðh1[h2Þ

sðh1[X2Þ
sðh1[h2Þ

26666664

37777775 ¼
1 1=3 1=3 1=5

1=3 1 1=5 3=5
1=3 1=5 1 3=5
1=5 3=5 3=5 1

26664
37775:
It is easy to verify that O is a positively definite matrix by checking the positivity of all its eigenvalues which are
k1 = 0.800 > 0, k2 � 0.835 > 0, k3 � 0.205 > 0 and k4 � 2.160 > 0 respectively. We have verified that O is a positively definite
matrix for Card(H) = n 6 5. However, it is an open challenge to prove that O is positively definite for any cardinality of H
ually, Jousselme et al. in [13] did not prove that D = [Dij = jXi \ Xjj/jXi [ Xjj] is a positively definite matrix. D is until now assumed to be positively definite.
only a conjecture and proving it is an open challenge.

randache code is a representation of disjoint parts of the Venn diagram of the frame H under consideration. This code depends on the model for H. For
e, let’s take H = {h1,h2}. If h1 \ h2 = ; (Shafer’s model) is assumed, then the code of h1 is h1i, whereas if h1 \ h2 – ; (free DSm model) is assumed, then the
h1 will be {h1i, h12i}. The length of a component of a code is the number of characters between h and i in Smarandache’s notation. For example, the
f component h12i is 2. See [34], pp. 42–43 for details.

s is a partial order since s(h1) = s(h2).
ually, one works with GHn{;}, and thus the column and row corresponding to the empty set do not enter in the definition of O.
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greater than 5, and that’s why we conjecture that O is a positively definite matrix for Card(H) > 5. Similarly to the formula
(9), we define SimO(m1,m2) by:
9 Her
m1(h2).
SimOðm1;m2Þ ¼ 1� 1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1 �m2ÞT Oðm1 �m2Þ

q
: ð10Þ
It can be easily proved that SimO(m1,m2) is an ESMS function following a proof similar to the proof of Theorem 4.2.

4.4. ESMS function SimB(m1,m2)

Another ESMS function based on Bhattacharya’s distance is defined as follows:

Definition 4.3. Let m1(�), m2(�) be two basic belief assignments in mGH , the ESMS function SimB(m1,m2) is defined by:
SimBðm1;m2Þ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

X
Xi2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1ðXiÞm2ðXiÞ

ps
; ð11Þ
where F is the core of sources S1 and S2, i.e. the set of elements of GH having a positive belief mass: F = {X 2 GHjm1(X) > 0 or
m2(X) > 0}.
Theorem 4.3. SimB(m1,m2) defined in formula (11) is an ESMS function.
(See proof in Appendix).

5. Comparison of ESMS functions

In this section we analyze the performances of the four ESMS functions aforementioned through a simple example, where
H = {h1,h2,h3}. We assume the free DSm model for H. In such case, GH = DH has 18 nonempty elements ai, i = 1,2, . . . ,s, . . . ,18.
GH is closed under \ and [ operators according to Dedekind’s lattice. Of course, we also may choose other lattice structures
in a similar way according to the right model of GH.

Let’s assume that h2 is the true identity of the object under consideration. Its optimal belief assignment is denoted
m2(�) , {m2(h2) = 1, m2(X) = 0 for X 2 GHn{h2}}. We perform a comparison of the four ESMS functions in order to show the
evolution of the measure of similarity between m1(�) and m2(�) when m1(�) varies from an equally distributed bba to
m2(�). More precisely, we start our simulation by choosing m1(�) with all elements in DH equally distributed, i.e.
m1(ai) = 1/18, for i = 1,2, . . . ,s, . . . ,18. Then, step-by-step we increase the mass of belief of h2 by a constant increment
D = 0.01 until reaching m1(h2) = 1. Meanwhile, the masses m1(X) of belief of all elements X – h2 of GH take value
[1 �m1(h2)]/17 to work with a normalized bba m1(�). The basic belief mass assigned to empty set is always zero, that is,
m1(;) = m2(;) = 0.

The degree of similarity of the four ESMS functions are plotted in Fig. 1. The speed of convergence9 of a similarity measure
is characterized by the slope angle a of the curve at origin, or by its tangent. Based on this speed of convergence criterion, the
analysis of Fig. 1 yields the following remarks:

(1) According to Fig. 1, tan(aB) � 0.86, tan(aE) � 0.68, tan(aO) � 0.6 and tan(aJ) � 0.57. SimJ(m1,m2) has the slowest con-
vergence speed, then SimO(m1,m2) takes second place.

(2) SimE(m1,m2) has a faster speed of convergence than SimO(m1,m2) and SimJ(m1,m2) because it doesnot consider the
intrinsic complexity of the elements in GH.

(3) The speed of convergence of SimB(m1,m2) is the fastest. When m1(�) and m2(�) become very similar, SimB(m1,m2)
becomes very quickly close to 1. However, if a small dissimilarity between m1(�) and m2(�) occurs, then SimB(m1,m2)
becomes very small which actually makes it very sensitive to small dissimilarity perturbations.

(4) In summary, one sees that no definitive conclusion about the best choice among these four ESMS functions can be
drawn in general. However if one considers the speed of convergence as the evaluation criterion for the choice of a
dissimilarity measure, one sees that SimB(m1,m2) is the best choice, because it is very sensitive to small dissimilarity
perturbations, whereas SimJ(m1,m2) appears to be the worst choice with respect to such a criterion.

6. Simulation results

We present two simulation examples to show how ESMS filter performs within Generalized Fusion Machine (GFM), and
to present its advantage.
e the convergence speed refers to how much the global agreement degree (similarity) is between m1(�) and m2(�) with the continuous decrease of



Table 1
A list of given sources of evidence.

S m(h1) m(h2) m(h1 \ h2) m(h1 [ h2) SimE

S1 0.3 0.4 0.2 0.1 0.8735
S2 0.3 0.2 0.4 0.1 0.800
S3 0.4 0.1 0.2 0.3 0.8268
S4 0.7 0.1 0.1 0.1 0.7592
S5 0.1 0.8 0.1 0.0 0.5550
S6 0.5 0.2 0.2 0.1 0.9106
S7 0.4 0.3 0.1 0.2 0.9368
S8 0.3 0.1 0.2 0.4 0.7592
S9 0.4 0.5 0.1 0.0 0.8103
S10 0.8 0.1 0.0 0.1 0.6806
Sc1 0.42 0.28 0.16 0.14 1.0000
S11 0.5 0.0 0.2 0.3 0.7569
S12 0.2 0.6 0.1 0.1 0.7205
S13 0.4 0.3 0.2 0.1 0.9360
S14 0.9 0.1 0.0 0.0 0.6230
S15 0.5 0.2 0.1 0.2 0.9100
S16 0.5 0.3 0.0 0.2 0.8900
S17 0.5 0.0 0.1 0.4 0.7205
S18 0.7 0.2 0.1 0.0 0.7807
S19 0.1 0.7 0.1 0.1 0.6217
S20 0.3 0.6 0.1 0.0 0.7390
Sc2 0.44 0.29 0.13 0.14 1.0000
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Fig. 1. Comparison of performance among ESMS functions.
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Example 1. Let’s take a 2D frame of discernment H = {h1,h2} and consider 20 equireliable sources of evidence according to
Table 1. We consider the free DSm model and the fusion space is the hyper-power set DH = {h1,h2,h1 \ h2,h1 [ h2}. Sc1 denotes
the barycentre of the front ten belief masses, while Sc2 denotes the barycentre10 of all belief masses. The measure of similarity
based on Euclidean ESMS function defined in Eq. (8) has been used here, but any other measures of similarity could be used
instead. In this example, if we take 0.75 as the threshold value, we see from Table 1 and for the former 10 sources of evidence,
that the measures of similarity of S5 and S10 with respect to Sc1 are lower than 0.75. Therefore, the sources S5 and S10 will be
discarded/filtered in the fusion. If the threshold value is set to 0.8, then the sources S5, S10, S4 and S8 will be discarded. That is,
the higher the given threshold is, the fewer the number of information sources through the filter is.

The main steps of the algorithm for carrying out GFM are the following ones:

(1) Initialization of the parameters: the number of sources of evidence is set to zero, (that is, one has initially no source,
s = 0), so that the number of sources in the filter window is n = 0.
10 Let’s denote k = jGHj the cardinality of GH and consider S independent sources of evidence. If all sources are equireliable, the barycentre of belief masses of
the S sources is given by: "j = 1, . . . ,k, �mðXjÞ ¼ 1

S

PS
s¼1msðXjÞ, see [21] for details.
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Fig. 2. Fusion result of the front 10 sources using different thresholds (0 � 0.9).
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(2) Include11 a source of evidence bSs and then test if the number of sources s is fewer than two. If s P 2, then go to the next
step, otherwise include/take into account another source of evidence bS2.

(3) Based on the barycentre of gbba’s of the front n 6 10 evidence sources, the degrees of similarity are computed accord-
ing to the formula (8), and compared with a prior tuned threshold. If it is larger than the threshold, then let n = n + 1.
Otherwise, introduce a new source of evidence bSsþ1.

(4) If n = 1, the current source, say S, is not involved in the fusion. If n = 2, then the classical DSm rule [34] is applied in the
fusion step between S and bS2, that is, the conjunctive consensus. Then PCR5 rule [35] is applied to redistribute the
remaining partial conflicts only to the sets involved in the corresponding partial conflicts. We get a new combined
source affected with the same index S. If 2 < n 6 10, after the current evidence source bSs is combined with the final
source of evidence produced last time, a new source of evidence is obtained and assigned to S again. Whenever
n 6 10, go back to step (2), otherwise, the current source of evidence bSs under test has been accepted by the ESMS fil-
ter, bSi is assigned to bSi�1; i 2 ½2; s;10�, and bSs is assigned to bS10. Then, bS10 is combined with the last source S, the com-
bined result is reassigned12 to S, and then, go back to step (2).

(5) Test whether to stop or not13: if not, then introduce a new source of evidence bSsþ1, otherwise stop and exit.

We show two simulation results in Figs. 2 and 3 following the working principle of GFM, when we use the sources of
evidence listed in Table 1.

The comparison of Figs. 2 and 3 yields the following remarks:

(1) On Fig. 2, we donot see the real advantage of ESMS filter since the convergence to h1 without ESMS filter (green curve)
is better than with ESMS filter in terms of improving fusion precision. This is because some useful sources of informa-
tion are filtered and thrown away with the increase of the threshold. Therefore the number of sources entering in the
final fusion will decrease. This yields a slower speed of convergence to h1. For example, let’s consider the source S3 in
Table 1. If S3 is combined with itself only once, according to formula (6), the fusion result is S = [mN(h1) = 0.5707,
mN(h2) = 0.0993, mN(h1 \ h2) = 0.1680, mN(h1 [ h2) = 0.1620].14 If combined twice, the result is S = [0.6765,
0.0852,0.1429,0.0954]. If combined thrice, then the result is S = [0.7453,0.00693,0.1216,0.0638]. The more the combina-
tional times is, the nearer to 1 mN(h1) is, and the nearer to 0 mN(h2) is. Therefore, ESMS filter might also result in losing
some useful information, while it filters some bad information.

(2) On Fig. 3, one sees the role played by ESMS filter. When there are highly conflicting sources, the result of the fusion
will not converge if ESMS filter is not used. With the fine-tuning of ESMS threshold, the convergence becomes better
and better because ESMS filter processes the fused information, and withdraws the sources which might cause the
results to be incorrect or imprecise, so that it improves the fusion precision and correctness.
11 We assume the free DSm model and consider that the general basic belief assignments are given.
12 In this work, we also use an ESMS filter window in a sliding mode.
13 In our experiment, judge whether the mobile robot stops receiving sonar’s data.
14 mN(�) refers to the new generalized basic belief assignment.
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Fig. 3. Fusion result of the total 20 sources using different thresholds (0 � 0.9).

X. Li et al. / Information Sciences 181 (2011) 1818–1835 1827
(3) We increase the applicability of the classical rules of combination. Since we reduce the number of conflicting sources
of evidence combined thanks to ESMS preprocessing, the degree of conflict between sources combined is kept low.
Therefore, classical rules, like Dempster’s rule, which do not perform well in high conflicting situations can also be
applied in robot perception. Without ESMS preprocessing step, the classical fusion rules cannot work very well
[26,32]. Therefore, we extend their domain of applicability when using ESMS filtering step.
Example 2. To show the advantage of the proposed method, we compare the performance of the method 1 (that is, using
sequential fusion with PCR5 only) with the method 2 (using sequential fusion PCR5 with ESMS preprocessing) in terms of
complexity cut. We consider the following two different cases:

	 Case 1: (simple)
We consider the frame H = {h1,h2} with DSm model. There are four focal elements in DHn{;}. We will consider 1001
sources of evidence having the following same belief assignments: ms(h1) = 0.4, ms(h2) = 0.2, ms(h1 \ h2) = 0.3,
ms(h1 [ h2) = 0.1, 1 6 s 6 1001.
	 Case 2: (a bit more complex)

We consider a bit more complex case with H = {h1,h2,h3} with DSm model. There are 18 elements in DHn{;}. If all ele-
ments of DHn{;} are focal elements, then the computation of the combination becomes very costly and very time-con-
suming. We only consider 1001 sources of evidence having the following same belief assignments over partial
elements in DHn{;}: ms(h1) = 0.15, ms(h2) = 0.25, ms(h3) = 0.1, ms(h1 \ h2) = 0.05, ms(h1 \ h3) = 0. 08, ms(h2 \ h3) = 0.18,
ms(h1 \ h2 \ h3) = 0.12, ms(h1 [ h2 [ h3) = 0.07, 1 6 s 6 1001.

In either Case 1 or 2, all sources are the same. Of course, we had better produce a set of sources (1001) at random, and
then partially choose sources by setting different ESMS thresholds. But a set of different sources (1001) produced at random
are not easy to be listed here. Since all operations involved in each method do count in the computation time, that is,
computation of the barycenter of belief masses, computation of ESMS, comparison and combination operations, obviously,
there is nearly no difference between the 1001 same and different sources in term of computational burden. For
convenience, here we replace the 1001 different sources with the 1001 same ones.

Table 2 shows, for Case 1, the comparison of the computing time15 for the sequential fusion based on PCR5 only16 (method
1) with the sequential fusion using PCR5 and ESMS preprocessor (method 2) when considering 21, 51 101, 201, 401, 501, 801
and 1001 sources of evidence selected. Similarly, Table 3 shows the comparison of computing time for Case 2.

The comparison of Tables 2 and 3 yields the following remarks:
15 using Processor: Intel (R) Core (TM)2 Duo CPU E7500 @ 2.93 GHz. EMS memory: 2.0 GB.
16 That is without ESMS preprocessing.



Table 2
Computing time with methods 1 and 2 for Case 1.

Number of sources 1001 21 51 101 201 401 501 801 1001

Time in ls 241 167 172 181 199 233 248 300 335
Method used 1 2 2 2 2 2 2 2 2

Table 3
Computing time with methods 1 and 2 for Case 2.

Number of sources 1001 21 51 101 201 401 501 801 1001

Time in ls 916 231 255 295 376 536 619 864 1025
Method used 1 2 2 2 2 2 2 2 2
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(1) Even if we have introduced an ESMS preprocessing step (method 2), it turns out that finally a drastic cut of computing
burden is obtained when these sources of evidence are highly conflicting and inconsistent. This is because we can sig-
nificantly reduce the number of sources combined with ESMS criterion. Seen from Table 2 or Table 3, when 21 sources
are chosen from 1001, that is, the remaining 800 sources assumed/regarded as highly conflicting and inconsistent
sources (actually they are consistent absolutely, here it is only a hypothesis), the computing time is 167 ls in Table 2
and 231 ls in Table 3, whereas the computing time using method 1 is 241 ls in Table 2 and 916 ls in Table 3. There-
fore, we save 1 � (167/241) � 30% of computing time in Table 2 when combining only 21 sources among 1001,
whereas we save 1 � (231/916) � 75% of computing time in Table 3.

(2) If the sources of evidence are less conflicting and more consistent, then ESMS preprocessing step seems useless.
Indeed, one sees in Table 2 that the computing time using method 2 is 335 ls after combining 1001 sources, which
is greater than the computing time of the method 1. The same remark holds for Case 2 as shown in Table 3. In such
a very particular case (when no source is filtered through ESMS), the computing time with method 2 becomes greater
than that of method 1, because method 2 needs more computation to carry out ESMS preprocessing without gaining
benefit (that is, saving computations) in PCR5 fusion step. Of course, with the increase of the number of focal elements,
the computations for PCR5 fusion become more and more complex and the time taken by ESMS preprocessor becomes
negligible with respect to PCR5 fusion step.

7. An application in mobile robot perception

The information acquired for building grid map using sonar sensors on a mobile robot is usually uncertain, imprecise and
even highly conflicting. An application in autonomous robot perception and navigation provides a good platform to verify
experimentally the advantage of ESMS filter in GFM. Although there exist many methods of building map based either on
Probability Theory [39], FST (Fuzzy System Theory) [27], DST [37], GST (Grey System Theory) [42–44], or DSmT [23], we just
compare the performances of the map building using a classical fusion machine without ESMS filter (i.e. CFMW) with the
classical fusion machine with ESMS filter (called GFM) in DSmT framework only. A detailed comparison between our current
ESMS-based approach with other methods is given in a companion paper in [24] where we show that ESMS-based approach
outperforms other approaches using almost the same experimental conditions and inputs. In order to further lessen the mea-
surement noises, we improve our past belief assignment model of sonar sensors in DSmT framework17 as follows:
17 We
represe
measur
mðh1Þ ¼
ð1� q=ðR� 2�ÞÞ � ð1� k=2Þ if

Rmin 6 q 6 R� �;
0 6 u 6 x=2;

�
0 otherwise;

8><>: ð12Þ

mðh2Þ ¼
expð�3ðq� RÞ2Þ � k if

Rmin 6 q 6 Rþ �;
0 6 u 6 x=2;

�
0 otherwise;

8><>: ð13Þ

mðh1 \ h2Þ ¼
1� ð2ðq� ðR� �Þ=RÞ2Þ if

Rmin 6 q 6 Rþ �;
0 6 u 6 x=2;

�
0 otherwise;

8><>: ð14Þ
assume that there are only two focal elements h1 and h2 in the frame of discernment. Elements of hyper-power set are h1, h2, h1 \ h2 and h1 [ h2. h1

nts the emptiness of a given grid cell, h2 represents the occupancy for a given grid cell, h1 \ h2 means that there is some conflict between two sonar
ements for the same grid cell and h1 [ h2 represents the ignorance for a grid cell because of the possible lack of measurement.
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Fig. 4. The running robot in a real experimental environment.
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mðh1 [ h2Þ ¼
tanð2ðq� RÞÞ � ð1� kÞ if R 6 q 6 Rþ �;
0 otherwise;

�
ð15Þ
where, k is given by (see [8] for justification)
k ¼ 1� ð2u=xÞ2 if 0 6 juj 6 x=2;
0 otherwise:

(
ð16Þ
The parameters R, q, �, Rmin, x, and u in formulas (12)–(16) were defined and used in [22–24]. R is the sonar reading (mea-
surement). q is the distance between the grid cell and sonar’s emitting point. � is the measurement error. Rmin is the minimal
range of sonar sensors. x is the scattering angle of sonar. u is the angle between the line (from the grid cell to sonar emitting
point) and the sonar’s emitting direction. The following functions C1 and C2 play an important role in lessening noises in the
process of map building. C1 function, proposed by Wang in [42–44], is a constriction function18 for sonar measurements de-
fined by:
C1 ¼

0 if q > ql2
;

ql2
�q

ql2
�ql1

if ql1
6 q 6 ql2

;

1 if q < ql2
;

8>><>>: ð17Þ
where, ql1
and ql2

represents the upper and lower limits of valid measurements, C2 is the constraint function19 for sonar’s
uncertainty defined as follows:
C2 ¼
ðq�Rþ0:5�

0:5� Þ2 if q� R > �0:5�;

ðq�R�0:5�
0:5� Þ2 if q� R < 0:5�;

0 if jq� Rj > 0:5�;

8><>: ð18Þ
where, the product of C1 and C2 is multiplied by the belief assignment function (m(h2),m(h1 \ h2),m(h1 [ h2)) respectively.
The experiment is performed by running a Pioneer II mobile robot with 16 sonar detectors in the indoor laboratory envi-

ronment as shown in Fig. 4. The environment’s size is 4550 mm � 3750 mm. The environment is divided into 91 � 75 rect-
angular cells having the same size according to the grid map method. The robot starts to move from the location (1 m,0.6 m),
which faces towards 0 degrees. We take the left bottom corner as the global coordinate origin of the map. Objects/obstacles
in the rectangular grid map are shown in Fig. 5. The processing steps of our intelligent perception and fusion system have
been carried out with our software Toolbox developed under VC++ 6.0 and with OpenGL server as a client end. When the
robot moves in the environment, the server end collects much information (such as the location of robot, sensors measure-
ments, velocity) from the mobile robot and its sensors onboard. Through the protocol of TCP/IP, the client end can get any
information from the server end and fuse them before displaying final result (the estimated grid map).
main idea is that the sonar readings must be discounted according to sonar characteristics.
main idea consists in assigning high belief assignments to sonar readings close to the sonar sensor.



Fig. 6. Map building based on GFM before improving the sonar model.

Fig. 5. Global coordinate system for the experiment.
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Since our environment is small, the robot moves on a short distance during a relatively short period of time. Therefore,
one only considers the self-localization method based on d-NFAM20 method [20,22] with the search from h � dh to h + dh. In
20 One has taken dh = 5o in our experiment.



Fig. 7. Map building based on GFM after improving the sonar model.

Fig. 8. Map building based on CFMW before improving the sonar model.
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order to reduce the computation burden, the restricted spreading arithmetic has been used. The main steps of map building
with GFM are the following ones:

(1) Initialize the parameters of the robot (location, velocity, etc.).
(2) Acquire 16 sonar measurements, and robot’s location from the odometer, when the robot is moving in the environ-

ment. The robot’s pose is calibrated with our d-NFAM method [20,22] and the time clock with a 100 ms period is
set up.

(3) Compute gbba of the fan-form area detected by each sonar sensor according to the formulas in [23].
(4) Apply DSmT-based GFM, that is, adopt Euclidean information filter to choose basic consistent sources of evidence

according to the formula (8). Then combine the consistent sources with DSm conjunctive rule [3,4,34] and compute
gbbas after combination. Then, redistribute partial conflicting masses to the gbba’s of sets involved in the partial con-
flict only with PCR5 rule [35].

(5) Compute the belief of occupancy Bel(h2) of some grid cells according to [34]. Save them into the map matrix and then
go to step (6).

(6) Update the map of the environment (here we set the second timer, of whose interval is 100 ms). Generally speaking,
the more the times of scanning map are, the more accurate the final map rebuilt is. At the same time, also test whether
the robot stops receiving the sensed data: if yes, then stop fusion and exit, otherwise, go back to step (2).

In this experiment, we obtain the maps built by GFM before and after improving the sonar model as shown in Fig. 6 and 7
respectively. In order to show the advantage of ESMS filter in GFM, we also compare our approach with the classical fusion
machine without ESMS filter (called CFMW). The maps built by CFMW before and after improving the sonar model are
shown in Figs. 8 and 9 respectively. Whenever the map is built before or after improving the sonar model, one sees that
GFM always outperforms CFMW because one obtains clearer boundary outlines and fewer noises in the map built. In addi-
tion, ESMS information filter coupled with PCR5 fusion rule, allows to reduce drastically the computational burden because
ESMS filter can filter the outlier-sources. With GFM approach, only the most consistent sources of evidence are combined
and this allows to reduce the uncertainty in the fusion result and to improve the robot perception of the surrounded
environment.
Fig. 9. Map building based on CFMW after improving the sonar model.
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8. Conclusions

In this paper, a general evidence supporting measure of similarity (ESMS) between two basic belief assignments has been
proposed. ESMS can be used in different fusion spaces (lattice structures) and with different distance measures. This ap-
proach allows to select the most coherent subset of sources of evidence available and to reject outlier-sources which is seri-
ously inconsistent with other sources. Therefore, a drastic cut of computational burden is possible with keeping good
performances which is very attractive for real-time applications having limited computing resources. The hybrid of ESMS
with the sophisticated and efficient PCR5 fusion rule of DSmT, called GFM (Generalized Fusion Machine), is specially useful
and interesting in robotic applications involving real-time perception and navigation systems. The real application of GFM
for mobile robot perception from sonar sensors presented in this work shows clearly a substantial improvement of the fusion
result in map building/estimation of the surrounded environment. This work also shows an important role played by the
most advanced fusion techniques for applications in robotics.
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Appendix A

Theorem 4.1. SimE(m1,m2) defined in (8) is an ESMS function.
Proof

(1) Let’s prove that SimE(m1,m2) 2 [0,1].If SimE(m1,m2) > 1, from (8) one would get 1ffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPjGH j
i¼1 ðm1ðXiÞ �m2ðXiÞÞ2

q
< 0 which

is impossible, so that SimE(m1,m2) 6 1.Let’s prove SimE(m1,m2) P 0 or equivalently from (8),
PjGH j

i¼1 ðm1ðXiÞ �m2ðXiÞÞ2 6
2.This inequality is equivalent to

PjGH j
i¼1 m1ðXiÞ2 þ

PjGH j
i¼1 m2ðXiÞ2 6 2þ 2

PjGH j
i¼1 m1ðXiÞm2ðXiÞ.We denote it (i) for short.(i)

always holds because one has
PjGH j

i¼1 m1ðXiÞ2 þ
PjGH j

i¼1 m2ðXiÞ2
� �

6
PjGH j

i¼1 m1ðXiÞ
h i2

þ
PjGH j

i¼1 m2ðXiÞ
h i2

� �
and thus

PjGH j
i¼1 m1ðXiÞ2 þ

PjGH j
i¼1 m2ðXiÞ2

� �
6 2 because

PjGH j
i¼1 msðXiÞ

h i2
¼ 1 for s = 1,2 (ms(�) being normalized bba).Therefore

inequality (i) holds and thusSimE(m1,m2) P 0.
(2) It is easy to check that SimE(m1,m2) satisfies the first condition of Definition 3.1.
(3) If m1(�) = m2(�), then SimE(m1,m2) = 1 because
XjGH j

i¼1

ðm1ðXiÞ �m2ðXiÞÞ2 ¼ 0:
Thus the second condition of Definition 3.1 is also satisfied.
(4) Nonnegativity has been proven above in the first part. Herein we use a particular case to show that Sim(m1,m2) = 0, i.e.

there exist mX
1 and mY

2 for some X, Y 2 GHn{;} such that X – Y, then according to (8), one getsPjGH j
i¼1 ðm1ðXiÞ �m2ðXiÞÞ2 ¼ mX

1ðXÞ
� 	2 þ mY

2ðYÞ
� 	2 ¼ 2 and thus one has SimE mX

1 ;m
Y
2


 �
¼ 1� ð

ffiffiffi
2
p

=
ffiffiffi
2
p
Þ ¼ 0, so that SimE(�, �)

verifies the third condition of Definition 3.1. h
Theorem 4.2. SimJ(m1,m2) defined in formula (9) is an ESMS function.
Proof

(1) Since the matrix D is conjectured to be a positively definite matrix, SimJ(m1,m2) satisfies the condition of symmetry.
(2) If m1 is equal to m2, according to (9), one gets SimJ(m1,m2) = 1. On the other hand, if SimJ(m1,m2) = 1, then the condition

m1 = m2 holds. That is, the condition of consistency is satisfied.
(3) According to (9), it can be drawn that SimJ(m1,m2) 6 SimE(m1,m2), and since the minimum value of SimJ(m1,m2) is zero,

then SimJ(m1,m2) is non-negative.
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(4) According to the definition of SimJ(m1,m2), we can easily verify that SimJ(m1,m2) is a true distance measure between
m1 and m2. h
Theorem 4.3. SimB(m1,m2) defined in formula (11) is an ESMS function.
Proof

(1) Since
P

Xi2F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1ðXiÞm2ðXiÞ

p
¼
P

Xi2F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðXiÞm1ðXiÞ

p
, then SimB(m1,m2) satisfies the condition of symmetry.

(2) If m1(�) = m2(�), according to (11),
X
Xi2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1ðXiÞm2ðXiÞ

p
¼
X
Xi2F

m1ðXiÞ ¼ 1
and therefore SimB(m1,m1) = 1. On the other hand, if SimB(m1,m2) = 1, then the condition m1(�) = m2(�) holds. That is, the
condition of consistency is satisfied.

(3) From the definition of bba,
P

Xi2Fm1ðXiÞ ¼ 1. Therefore,
X
Xi2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1ðXiÞm2ðXiÞ

p
2 ½0;1�:
According to (11), it can be drawn that SimB(m1,m2) 2 [0,1]; that is, the minimum value of SimB(m1,m2) is zero. There-
fore, SimB(m1,m2) is a nonnegative measure.

(4) According to the definition of SimB(m1,m2), we can easily verify that SimB(m1,m2) is a true distance measure between
m1 and m2. h
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