BENCZE MIHÁLY FLORIN POPOVICI FLORENTIN SMARANDACHE Inequalities for The Integer Part Function

In Florentin Smarandache: "Collected Papers", vol. III. Oradea (Romania): Abaddaba, 2000.

Inequalities For The Integer Part Function

In this paper we prove some inequalities for the integer part function and we give some applications in the number theory.

Theorem 1. For any x, y > 0 we have the inequality

(1) $[5x] + [5y] \ge [3x+y] + [3y+x]$, where [·] means the integer part function.

Proof. We use the notations $\mathbf{x}_1 = [\mathbf{x}], \mathbf{y}_1 = [\mathbf{y}], \mathbf{u} = \{\mathbf{x}\}, \mathbf{v} = \{\mathbf{y}\}, \mathbf{x}_1, \mathbf{y}_1 \in \mathbb{N}$ and $\mathbf{u}, \mathbf{v} \in [0, 1)$. We can write the inequality (1) as

 $x_1 + y_1 + [5u] + [5v] \ge [3u+v] + [3v+u]$. We distinguish the following cases:

 α) Let $u \ge v$. If $u \le 2v$, then $5v \ge 3v+u$ and $[5v] \ge [3v+u]$, analogously $5u \ge 3u+v$ and $[5u] \ge [3u+v]$, from where by addition we obtain (1). If u>2v and 5u=a+b, 5v=c+d, $a,c\in N$, $0 \le b < 1$, $0 \le d < 1$, then we have to prove the following inequality

$$a + c + x_1 + y_1 \ge \left[\frac{3a + c + 3b + d}{5}\right] + \left[\frac{3c + a + 3d + b}{5}\right] \quad (2).$$

But, considering that 1 > u > 2v, we get 5 > 5u > 10v, from where 5 > a+b > 2c+2d, thus a+b < 5 and $a \le 4$. If a < 2c, then $a \le 2c - 1$ and $a + 1 - 2c \le 0$, thus a+b-2c < 0; contradiction with a+b-2c>2d, thus $4\ge a$, $a\ge 2c$ and 3b+d<4, 3d+b<4. From $4\ge a\ge 2c$ we have the cases from the table and in each of the nine cases is verified the inequality (2).

a 444332210

c 210011000

Application I. For any m, $n \in N$, (5m)!(5n)! is divisible by m!n!(3m+n)!(3a+m)!.

Proof. If p is a prime number, the power exponent of p in decomposition of m! is $\left[\frac{m}{n}\right] + \left[\frac{m}{n^2}\right] + \dots$ It is sufficient to prove that

$$\begin{bmatrix} \frac{5m}{r} \end{bmatrix} + \begin{bmatrix} \frac{5n}{r} \end{bmatrix} \ge \begin{bmatrix} \frac{m}{r} \end{bmatrix} + \begin{bmatrix} \frac{n}{r} \end{bmatrix} + \begin{bmatrix} \frac{3m+n}{r} \end{bmatrix} + \begin{bmatrix} \frac{3n+m}{r} \end{bmatrix}$$

for any $r \in N$, $r \ge 2.1f m = rm_1 + x$, $n = rm_1 + y$, where $0 \le x \le r$, $0 \le y \le r$, m, $n \in Z$, is sufficient to prove that ______

 $\begin{bmatrix} \frac{5x}{r} \end{bmatrix} + \begin{bmatrix} \frac{5y}{r} \end{bmatrix} \ge \begin{bmatrix} \frac{3x+y}{r} \end{bmatrix} + \begin{bmatrix} \frac{3y+x}{r} \end{bmatrix}, \text{ but this inequality verifies the theorem 1.}$

Remark. If x, y > 0, then we have the inequality

 $[5x]+[5y] \ge [x]+(y]+[3x+y]+[3y+x].$

Together with Mihály Beneze and Florin Popovici.

Theorem 2. (Szilárd András). If x, y, $z \ge 0$, then we have the inequality $[3x]+[3y]+[3z]\ge [x]+(y]+[z]+[x+y]+[y+z]+[z+x]$.

Application 2. For any $a,b,c \in N$, (3a)!(3b)!(3c)! is divisible by a!b!c!(a+b)!(b+c)!(c+a)!.

Proof. Let k_1, k_2, k_3 be the biggest power for which $p^{K_1}|(3a)!$, $p^{K_2}|(3a)!$, $p^{K_3}|(3c)!$ respectively, and r_i ($i \in \{1, 2, 3, 4, 5, 6\}$) the biggest power for which $p^{\Gamma_1}|a!$, $p^{\Gamma_2}|b!$, $p^{\Gamma_3}|c!$, $p^{\Gamma_4}|(a+b)!$, $p^{\Gamma_5}|(b+c)!$, $p^{\Gamma_6}|(c+a)!$ respectively, then $k_1+k_2+k_3=\left(\left[\frac{3a}{p}\right]+\left[\frac{3a}{p^2}\right]+...\right)+\left(\left[\frac{3b}{p}\right]+\left[\frac{3b}{p^2}\right]+...\right)+\left(\left[\frac{3c}{p}\right]+\left[\frac{3c}{p^2}\right]+...\right)$ $\sum_{i=1}^{o}r_i\left(\left[\frac{a}{p}\right]+\left[\frac{a}{p^2}\right]+...\right)+\left(\left[\frac{b}{p}\right]+\left[\frac{b}{p^2}\right]+...\right)+\left(\left[\frac{c+a}{p}\right]+\left[\frac{c+a}{p^2}\right]+...\right)$

 $+\left(\left[\frac{a+b}{p}\right]+\left[\frac{a+b}{p^2}\right]+\ldots\right)+\left(\left[\frac{b+c}{p}\right]+\left[\frac{b+c}{p^2}\right]+\ldots\right)+\left(\left[\frac{c+a}{p}\right]+\left[\frac{c+a}{p^2}\right]+\ldots\right).$ We have to prove that $k + k + k > \sum r$, but this inequality reduce

We have to prove that $k_1 + k_2 + k_3 \ge \sum_{i=1}^{N} r_i$, but this inequality reduces to theorem 2.

Theorem 3. If x, y, $z \ge 0$, then we have the inequality

 $[2x]+[2y]+[2z] \le [x]+[y]+[z]+[x+y+z].$

Application 3. If $a,b,c \in N$, then a!b!c!(a+b+c)! is divisible by (2a)!(2b)!(2c)!.

Theorem 4. If x, $y \ge 0$ and n, $k \in N$ so that $n \ge k \ge 0$, then we have the inequality $[nx] + [ny] \ge k[x] + k[y] + (n - k)[x + y]$.

Application 4. If a, b, n, $k \in N$ and $n \ge k$, then (na)!(nb)! is divisible by $(a!)^k (b!)^k ((a+b)!)^{n-k}$.

Theorem 5. If $x_k \ge 0$ (k = 1, 2, ..., n), then we have the inequality $2\sum_{k=1}^{n} [2x_k] \ge 2 \sum_{k=1}^{n} [x_k] + [x_1 + x_2] + [x_2 + x_3] + ... + [x_n + x_1].$

Application 5. If $a_k \in N$ (k = 1, 2, ..., n), then $\prod_{k=1}^{n} ((2a_k)!)^2$ is divisible by $\prod_{k=1}^{n} (a_k!)^2 (a_1+a_2)! (a_2+a_3)! \dots (a_n+a_1)!.$

Theorem 6. If $x_k \ge 0$ (k = 1, 2, ..., n), then we have the inequality $m \sum_{k=1}^{n} [2x_k] + n \sum_{p=1}^{m} [2x_p] \ge m \sum_{k=1}^{n} [x_k] + n \sum_{p=1}^{m} [x_p] + \sum_{k=1}^{n} \sum_{p=1}^{m} [x_k + x_p].$

Application 6. If $a_k \in N$ (k = 1, 2, ..., n), then $\frac{n}{2}$ $\frac{m}{2}$ $\frac{n}{2}$ $\frac{n}{2}$ $\frac{n}{2}$ $\frac{n}{2}$ $\frac{n}{2}$ $\frac{n}{2}$ $\frac{n}{2}$

$$\prod_{k=1}^{n} (2a_{k}!)^{m} \prod_{p=1}^{m} (2a_{p}!)^{n} \text{ is divisible by } \prod_{k=1}^{n} (a_{k}!)^{m} \prod_{p=1}^{m} (a_{p}!)^{n} \prod_{k=1}^{n} \prod_{p=1}^{m} ((a_{k}+a_{p})!).$$

Theorem 7. If $x, y \ge 1$, then we have the inequality

$$\left[\sqrt{x}\right] + \left[\sqrt{y}\right] + \left[\sqrt{x+y}\right] \ge \left[\sqrt{2x}\right] + \left[\sqrt{2y}\right]$$

Proof. By the concavity of the square root function

$$\sqrt{x + y} = \sqrt{\frac{2x + 2y}{2}} \ge \frac{1}{2}\sqrt{2x} + \frac{1}{2}\sqrt{2y} \ge \left[\frac{1}{2}\sqrt{2x}\right] + \left[\frac{1}{2}\sqrt{2y}\right],$$

it follows that $\left[\sqrt{x + y}\right] \ge \left[\frac{1}{2}\sqrt{2x}\right] + \left[\frac{1}{2}\sqrt{2y}\right].$

Therefore it is sufficient to show that $\left[\sqrt{x}\right] + \left\lfloor \frac{1}{2}\sqrt{2x} \right\rfloor \ge \left[\sqrt{2x}\right]$ for x≥l. The identity $\begin{bmatrix} x \\ \frac{1}{2}\sqrt{2x} \end{bmatrix} \begin{bmatrix} x + \frac{1}{2} \end{bmatrix}$ has a straightforward proof. We use it to replace $\left\lfloor \frac{1}{2}\sqrt{2x} \right\rfloor \begin{bmatrix} x + \frac{1}{2} \end{bmatrix}$ has a straightforward proof. With $\left\lfloor \sqrt{2x} \right\rfloor - \left\lfloor \frac{1}{2}\sqrt{2x} + \frac{1}{2} \right\rfloor$ This yields $\left\lfloor \sqrt{x} \right\rfloor \ge \left\lfloor \frac{1}{2}\sqrt{2x} + \frac{1}{2} \right\rfloor$ for x≥1. This last inequality followed by notice that x ≥4 implies $(2 - \sqrt{2})\sqrt{x}$)1 or $\left\lfloor \sqrt{x} \right\rfloor > \left\lfloor \frac{1}{2}\sqrt{2x} + \frac{1}{2} \right\rfloor$ and 1≤ x < 4 implies $\frac{1}{2}\sqrt{2x} + \frac{1}{2}$

Application 7. If $a, b \in N$, then $a!b! \left[\sqrt{a^2 + b^2} \right]$ is divisible by $\left[a\sqrt{2} \right] \left[b\sqrt{2} \right]$!

["Octogon", Braşov, Vol. 5, No. 2, 60-2, 1997.]