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INTEGER SOLUTIONS OF LINEAR EQUATIONS 

Definitions and properties of the integer solutions of linear equations. 

Consider the following linear equation: 

 (1)   aixi
i=1

n

∑ = b ,  

with all ai ≠ 0  and b  in  Z . 
 Again, let  h ∈N , and  fi :Zh → Z , i = 1,n . (1,n  means: all integers from 1 to n ). 

Definition 1. 
xi = xi

0 , i = 1,n , is a particular integer solution of equation (1), if all  xi
0 ∈Z  and 

ai xi
0

i=1

n

∑ = b . 

Definition 2. 
xi = fi (k1,..., kh ) , i = 1,n , is the general integer solution of equation (1) if: 

a) ai fi (k1,..., kh )
i=1

n

∑ = b;   ∀(k1,...,kh ) ∈Zh , 

b) For any particular integer solution of equation (1), xi = xi
0 , i = 1,n , there exist

0 0
1( ,..., ) h

hk k ∈Z  such that xi
0 = fi (k1

0 ,..., kh
0 )  for all i = 1,n  {i. e. any particular integer 

solution can be extracted from the general integer solution by parameterization}. 
We will further see that the general integer solution can be expressed by linear 

functions.  

 For 1 ≤ i ≤ n  we consider the functions fi = cijk j + di
j =1

h

∑  with all  cij ,  di ∈Z . 

Definition 3. 
A = (cij )i, j  is the matrix associated with the general solution of equation (1). 

Definition 4. 
 The integers k1,..., ks ,  1 ≤ s ≤ h  are independent if all the corresponding column 
vectors of matrix A  are linearly independent. 

Definition 5. 
An integer solution is s -times undetermined if the maximal number of 

independent parameters is s . 

Theorem 1. The general integer solution of equation (1) is n − 1( )-times 
undetermined. 
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Proof: 
We suppose that the particular integer solution is of the form:  

 (2) xi = uiePe + vi
e=1

r

∑ ,   i = 1,n , with all  uie,  vi ∈Z ,  

Pe  are parameters of  Z , while a ≤ r < n − 1 . 
Let (x1

0 ,..., xn
0 )  be a general integer solution of equation (1) (we are not interested in 

the case when the equation does not have an integer solution). The solution: 
xj = ank j + x j

0 ,            j = 1,n − 1

xn = − ajk j − xn
0

j =1

n−1

∑
⎛

⎝⎜
⎞

⎠⎟

⎧

⎨
⎪

⎩
⎪

is undetermined n − 1( )-times (it can be easily checked that the order of the associated 
matrix is n − 1 ). Hence, there are n − 1  undetermined solutions. Let’s consider, in the 
general case, a solution be undetermined n − 1( )-times: 

xi = cijk j + di
j =1

n−1

∑ ,  i = 1,n  with all  cij ,  di ∈Z . 

Consider the case when b = 0 . 
 Then  

aixi = 0
i=1

n

∑ .  

It follows:  

ai xi = ai
i=1

n

∑ cijk j + di
j =1

n−1

∑
⎛

⎝⎜
⎞

⎠⎟
= ai

i=1

n

∑ cijk j +
j =1

n−1

∑ ai
i=1

n

∑ di = 0
i=1

n

∑ . 

 For k j = 0 ,  j = 1,n − 1  it follows that ai
i=1

n

∑ di = 0 . 

 For kj0
= 1  and k j = 0,   j ≠ j0 , it follows that ai

i=1

n

∑ cij0
= 0 . 

Let’s consider the homogenous linear system of n  equations with n  unknowns: 

xi
i=1

n

∑ cij = 0,       j = 1,n − 1

 xi
i=1

n

∑ di = 0

⎧

⎨
⎪⎪

⎩
⎪
⎪

which, obviously, has the solution xi = ai ,  i = 1,n  different from the trivial one. Hence 

the determinant of the system is zero, i.e., the vectors cj = c1 j ,...,cnj( )t
, j = 1,n − 1 ,

D = d1,...,dn( )t  are linearly dependent. 
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But the solution being n − 1( )-times undetermined it shows that cj ,  j = 1,n − 1  are

linearly independent. Then c1,...,cn−1( ) determines a free sub-module  Z  of order n − 1  in

 Zn  of solutions for the given equation. 
Let’s see what can we obtain from (2). We have: 

0 = ai
i=1

n

∑ xi = ai
i=1

n

∑ uiePe + vi
e=1

r

∑⎛
⎝⎜

⎞
⎠⎟

.  

As above, we obtain: 

ai
i =1

n

∑ vi = 0  and aiuie0
= 0

e=1

r

∑
similarly, the vectors Uh = u1h ,...,unh( ) are linearly independent, h = 1,r , Uh , h = 1,r  are
V = v1,...,vn( ) particular integer solutions of the homogenous linear equation.

Sub-case (a1) 
U,h = 1,r are linearly dependent. This gives { }1,..., rU U = the free sub-module of 

order r  in  Zn  of solutions of the equation. Hence, there are solutions from { }1 1,..., nV V −

which are not from { }1,..., rU U ; this contradicts the fact that (2) is the general integer 
solution. 

Sub-case (a2) 
Uh ,  h = 1,r,  V  are linearly independent. Then { }1,..., rU U V+  is a linear variety 

of the dimension { }1 11 dim ,..., nn V V −< − =  and the conclusion can be similarly drawn. 

Consider the case when b ≠ 0 . So, ai
i=1

n

∑ xi = b .  

Then: 

ai cijk j + di
j =1

n−1

∑
⎛

⎝⎜
⎞

⎠⎟
= aicij

i=1

n

∑⎛
⎝⎜

⎞
⎠⎟j =1

n−1

∑ kj + ai
i=1

n

∑ di
i=1

n

∑ = b;   ∀(k1,...,kn−1) ∈Zn−1 .  

As in the previous case, we obtain ai
i=1

n

∑ di = b  and ai
i=1

n

∑ cij = 0,       ∀ j = 1,n − 1.  

The vectors ( ),...,
t

j ij njc c c= , j = 1,n − 1 , are linearly independent because the solution is 

undetermined n − 1( )-times. 

Conversely, if c1,...,cn−1,  D  (where D = d1,...,dn( )t ) were linearly dependent, it  

would mean that D = sjcj
j =1

n−1

∑ with all s j  scalar; it would also mean that 

b = ai
i=1

n

∑ di = ai
i=1

n

∑ s jcij
j =1

n−1

∑
⎛

⎝⎜
⎞

⎠⎟
= s j ai

i=1

n

∑ cij

⎛
⎝⎜

⎞
⎠⎟j =1

n−1

∑ = 0 . 

This is impossible. 

(3) Then { }1 1,..., nc c D− +  is a linear variety. 
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Let us see what we can obtain from (2). We have: 

b = ai
i=1

n

∑ xi = ai
i=1

n

∑ uiePe + vi
e=1

r

∑⎛
⎝⎜

⎞
⎠⎟

= ai
i=1

n

∑ uie

⎛
⎝⎜

⎞
⎠⎟

Pe + ai
i=1

n

∑ vi
e=1

r

∑

and, similarly: ai
i =1

n

∑ vi = b  and ai
i=1

n

∑ uie = 0,       ∀ e = 1,r , respectively. The vectors 

( )1 ,..., t
e e neU u u= , e = 1,r  are linearly independent because the solution is undetermined 

r -times. 
A procedure like that applied in (3) shows that U1,...,Ur ,  V  are linearly 

independent, where ( )1,...,
t

nV v v= . Then { }1,..., rU U V+  = a linear variety = free sub-

module of order r < n − 1. That is, we can find vectors from { }1 1,..., nc c D− +  which are 

not from { }1,..., rU U V+ , contradicting the “general” characteristic of the integer number 
solution. Hence, the general integer solution is undetermined n − 1( )-times. 

Theorem 2. The general integer solution of the homogeneous linear equation 

aixi
i=1

n

∑ = 0  (all { }\ 0ia ∈Z ) can be written under the form:

 (4)  xi = cijk j ,   
j =1

n−1

∑ i = 1,n

(with d1 = ... = dn = 0 ). 
Definition 6. This is called the standard form of the general integer solution of a 

homogeneous linear equation. 
Proof: 
We consider the general integer solution under the form: 

xi = cijPj + di ,   
j =1

n−1

∑ i = 1,n

with not all di = 0 . We’ll show that it can be written under the form (4). The 
homogeneous equation has the trivial solution xi = 0,   i = 1,n . There is 

 p1
0 ,..., pn−1

0( )∈Zn−1  such that cij pj
0 + di = 0,   ∀

j =1

n−1

∑ i = 1,n . 

 Substituting: Pj = k j + pj ,   j = 1,n − 1  in the form shown at the beginning of the 
demonstration, we will obtain form (4). We have to mention that the substitution does not 
diminish the degree of generality as  Pj ∈Z ⇔  k j ∈Z  because j = 1,n − 1 . 

Theorem 3. The general integer solution of a non-homogeneous linear equation is 
equal to the general integer solution of its associated homogeneous linear equation plus 
any particular integer solution of the non-homogeneous linear equation. 

Proof: 
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Let’s consider that 
1

1

,     1,
n

i ij j
j

x c k i n
−

=

= =∑ , is the general integer solution of the 

associated homogeneous linear equation and, again, let xi = vi ,   i = 1,n , be a particular 

integer solution of the non-homogeneous linear equation. Then 
1

1

+ ,     1,
n

i ij j i
j

x c k v i n
−

=

= =∑ , 

is the general integer solution of the non-homogeneous linear equation. 

 Actually, 
1 1

1 1 1 1 1 1

n n n n n n

i i i ij j i i ij j i i
i i j i j i

a x a c k v a c k a v b
− −

= = = = = =

⎛ ⎞ ⎛ ⎞
= + = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑ ∑ ∑ ; 

if xi = xi
0 ,   i = 1,n , is a particular integer solution of the non-homogeneous linear 

equation, then xi = xi − vi ,   i = 1,n , is a particular integer solution of the homogeneous 
linear equation: hence, there is  (k1

0 ,..., kn−1
0 ) ∈Zn−1  such that  

cij
j =1

n−1

∑ kj
0 = x

i

0 − vi ,   ∀ i = 1,n ,  

i.e.:

cij
j =1

n−1

∑ kj
0 + vi = x

i

0 ,   ∀ i = 1,n ,  

which was to be proven. 

Theorem 4. If 
1

1

,   1,
n

i ij j
j

x c k i n
−

=

= =∑  is the general integer solution of a 

homogeneous linear equation ( ),..., 1ij njc c ∼  1, 1j n∀ = − . 

The demonstration is done by reduction ad absurdum. If 0 0,  1 1j j n∃ ≤ ≤ −  such 

that ( )0 0 0
,..., 1ij nj jc c d ≠ ±∼ , then cij0

= cij0

' dij0
 with ( )0 0

' ',..., 1,     1,ij njc c i n∀ =∼ . 

But xi = cij0

' ,  i = 1,n , represents a particular integer solution as 

ai
i=1

n

∑ xi = ai
i=1

n

∑ cij0

' = 1 / dj0
⋅ aicij0

= 0
i=1

n

∑
(because xi = cij0

,    i = 1,n  is a particular integer solution from the general integer 
solution by introducing kj0

= 1  and k j = 0 , j ≠ j0 . But the particular integer solution 

xi = cij0

' ,    i = 1,n , cannot be obtained by introducing integer number parameters (as it 
should) from the general integer solution, as from the linear system of n  equations and 
n − 1  unknowns, which is compatible. We obtain: 

xi = cijk j
j =1
j ≠ j0

n

∑ +cij0

' dj0
kj0

=cij0

' ,     i = 1,n . 

Leaving aside the last equation – which is a linear combination of other n − 1  
equations – a Kramerian system is obtained, as follows: 
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0

0

0

00 0

0 0

'
11 1, 1

'
1,1 1 1 1

'
11 1, 1

'
1,1 1 1 1

...... .......

:
... ... 1

....... ......

:
... ...

ij n

n n j n n
j

jij j n

n n j j n n

c c c

c c c
k

dc c d c

c c d c

−

− − − −

−

− − − −

= = ∉Z  

Therefore the assumption is false (end of demonstration). 

Theorem 5. Considering the equation (1) with ( )1,..., 1,   0na a b =∼  and the 

general integer solution xi = cijk j
j =1

n−1

∑ ,  i = 1,n , then  

( ) ( )1 1 1 1 1,..., , ,..., ,..., ,   1,i i n i ina a a a c c i n− + − ∀ =∼ .  
Proof: 
The demonstration is done by double divisibility. 

Let’s consider i0 ,   1 ≤ i0 ≤ n  arbitrary but fixed. xi0
= ci0 jk j

j =1

n−1

∑ . Consider the 

equation ai xi = −
i≠ i0

∑ ai0
xi0

  . We have shown that xi = cij ,   i = 1,n  is a particular integer 

solution irrespective of j,   a ≤ j ≤ n − 1 .  
The equation ai xi = −

i≠ i0

∑ ai0
ci0 j  obviously, has the integer solution xi = cij ,   i ≠ i0 . 

Then ( )0 01 1 1,..., , ,...,i i na a a a− +  divides − ai0
ci0 j  as we have assumed, it follows that 

( )1,..., 1na a ∼ , and it follows that ( )0 0 01 1 1,..., , ,..., |i i n i ja a a a c− +  irrespective of j . Hence 

( ) ( )0 0 0 01 1 1 1 1,..., , ,..., | ,..., ,   1,i i n i i na a a a c c i n− + − ∀ = , and the divisibility in one sense was 

proven. 
Inverse divisibility: 
Let us suppose the contrary and consider that ∃i1 ∈1,n  for which 

( ) ( )1 1 1 1 1 11 1 1 1 2 1 1,..., , ,..., ,...,i i n i i i i na a a a d d c c− + −≠∼ ∼ ; we have considered di11  and di1 2

without restricting the generality. di11 | di1 2  according to the first part of the 

demonstration. Hence,  ∃d ∈Z  such that 
1 12 1,  1i id d d d= ⋅ ≠ .  

xi1
= ci1 jk j

j =1

n−1

∑ =d ⋅ di11 ci1 j
' kj

j =1

n−1

∑ ; 

ai xi
i=1

n

∑ = 0 ⇒ ai xi
i≠ i1

n

∑ = −ai1
xi1

ai xi = −ai1
d ⋅ di11

i ≠ i1

∑ ci1 j
' k j

j =1

n−1

∑ , 
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where ( )1 11 1,..., 1i i nc c − ∼ . 

The non-homogeneous linear equation ai xi = −ai1
di11

i ≠ i1

∑ has the integer solution 

because ai1
di11  is divisible by ( )1 11 1 1,..., , ,...,i i na a a a− + . Let’s consider that xi = x

i

0 ,   i ≠ i1 , 

is its particular integer solution. It follows that the equation ai
i=1

n

∑ xi = 0  the particular 

solution xi = x
i

0 ,   i ≠ i1,    xi1
= di1

, which is written as (5). We’ll show that (5) cannot be 
obtained from the general solution by integer number parameters: 

(6) 
cij

j =1

n−1

∑ k j = x
i

0 ,    i ≠ i1

d ⋅ di11 cij
j =1

n−1

∑ k j = di11

⎧

⎨
⎪
⎪

⎩
⎪
⎪

But the equation (6) does not have an integer solution because d ⋅ di11 | di11  thus, 
contradicting, the “general” characteristic of the integer solution. 

As a conclusion we can write: 

Theorem 6. Let’s consider the homogeneous linear equation ai
i=1

n

∑ xi = 0 , with all 

{ }\ 0ia ∈Z  and ( )1,..., 1na a ∼ . 

 Let 
1

,  1,
h

i ij j
j

x c k i n
=

= =∑ , with all  cij ∈Z , all kj  integer parameters and let’s 

consider  h ∈N  be a general integer solution of the equation. Then,  
1) the solution is undetermined n − 1( )-times;

2) ∀ j = 1,n − 1  we have ( )1 ,..., 1j njc c ∼ ; 

3) ∀ i = 1,n  we have ( ) ( )1 1 1 1 1,..., ,..., , ,...,i in i i nc c a a a a− − +∼ . 
The proof results from theorems 1,4 and 5. 

Note 1. The only equation of the form (1) that is undetermined n -times is the 
trivial equation 0 ⋅ x1 + ...+ 0 ⋅ xn = 0 . 

Note 2. The converse of theorem 6 is not true. 

Counterexample:  

(7) 
1 1 2

2 1 2

3 1 2 1 2

  
5 3
7  ;     ,

x k k
x k k
x k k k k

= − +⎧
⎪ = +⎨
⎪ = − ∈⎩ Z

is not the general integer solution of the equation 
(8) −13x1 + 3x2 − 4x3 = 0   
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although the solution (7) verifies the points 1), 2) and 3) of theorem 6. (1, 7, 2) is the 
particular integer solution of (8) but cannot be obtained by introducing integer number 
parameters in (7) because from  

1 2

1 2

1 2

 1
5 3 7
7   = 2     

k k
k k
k k

− + =⎧
⎪ + =⎨
⎪ −⎩

it follows that 1
2

k = ∉Z  and 3
2

k = ∉Z  (unique roots). 
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