FLORENTIN SMARANDACHE

Integer Solutions of Linear

Equations

In Florentin Smarandache: "Collected Papers", vol. I (second edition). Ann Arbor (USA): InfoLearnQuest, 2007.

INTEGER SOLUTIONS OF LINEAR EQUATIONS

Definitions and properties of the integer solutions of linear equations.

Consider the following linear equation:

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} x_{i}=b \tag{1}
\end{equation*}
$$

with all $a_{i} \neq 0$ and b in \mathbb{Z}.
Again, let $h \in \mathbb{N}$, and $f_{i}: \mathbb{Z}^{h} \rightarrow \mathbb{Z}, i=\overline{1, n} \cdot(\overline{1, n}$ means: all integers from 1 to $n)$.

Definition 1.

$x_{i}=x_{i}^{0}, i=\overline{1, n}$, is a particular integer solution of equation (1), if all $x_{i}^{0} \in \mathbb{Z}$ and $\sum_{i=1}^{n} a_{i} x_{i}^{0}=b$.

Definition 2.

$x_{i}=f_{i}\left(k_{1}, \ldots, k_{h}\right), i=\overline{1, n}$, is the general integer solution of equation (1) if:
a) $\sum_{i=1}^{n} a_{i} f_{i}\left(k_{1}, \ldots, k_{h}\right)=b ; \quad \forall\left(k_{1}, \ldots, k_{h}\right) \in \mathbb{Z}^{h}$,
b) For any particular integer solution of equation (1), $x_{i}=x_{i}^{0}, i=\overline{1, n}$, there exist $\left(k_{1}^{0}, \ldots, k_{h}^{0}\right) \in \mathbb{Z}^{h}$ such that $x_{i}^{0}=f_{i}\left(k_{1}^{0}, \ldots, k_{h}^{0}\right)$ for all $i=\overline{1, n}$ \{i. e. any particular integer solution can be extracted from the general integer solution by parameterization $\}$.

We will further see that the general integer solution can be expressed by linear functions.

For $1 \leq i \leq n$ we consider the functions $f_{i}=\sum_{j=1}^{h} c_{i j} k_{j}+d_{i}$ with all $c_{i j}, d_{i} \in \mathbb{Z}$.

Definition 3.

$A=\left(c_{i j}\right)_{i, j}$ is the matrix associated with the general solution of equation (1).

Definition 4.

The integers $k_{1}, \ldots, k_{s}, 1 \leq s \leq h$ are independent if all the corresponding column vectors of matrix A are linearly independent.

Definition 5.

An integer solution is s-times undetermined if the maximal number of independent parameters is s.

Theorem 1. The general integer solution of equation (1) is $(n-1)$-times undetermined.

Proof:

We suppose that the particular integer solution is of the form:

$$
\begin{equation*}
x_{i}=\sum_{e=1}^{r} u_{i e} P_{e}+v_{i}, \quad i=\overline{1, n}, \text { with all } u_{i e}, v_{i} \in \mathbb{Z} \tag{2}
\end{equation*}
$$

P_{e} are parameters of \mathbb{Z}, while $a \leq r<n-1$.
Let $\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)$ be a general integer solution of equation (1) (we are not interested in the case when the equation does not have an integer solution). The solution:

$$
\left\{\begin{array}{l}
x_{j}=a_{n} k_{j}+x_{j}^{0}, \quad j=\overline{1, n-1} \\
x_{n}=-\left(\sum_{j=1}^{n-1} a_{j} k_{j}-x_{n}^{0}\right)
\end{array}\right.
$$

is undetermined $(n-1)$-times (it can be easily checked that the order of the associated matrix is $n-1$). Hence, there are $n-1$ undetermined solutions. Let's consider, in the general case, a solution be undetermined ($n-1$)-times:

$$
x_{i}=\sum_{j=1}^{n-1} c_{i j} k_{j}+d_{i}, \quad i=\overline{1, n} \text { with all } c_{i j}, d_{i} \in \mathbb{Z}
$$

Consider the case when $b=0$.
Then

$$
\sum_{i=1}^{n} a_{i} x_{i}=0 .
$$

It follows:

$$
\sum_{i=1}^{n} a_{i} x_{i}=\sum_{i=1}^{n} a_{i}\left(\sum_{j=1}^{n-1} c_{i j} k_{j}+d_{i}\right)=\sum_{i=1}^{n} a_{i} \sum_{j=1}^{n-1} c_{i j} k_{j}+\sum_{i=1}^{n} a_{i} d_{i}=0 .
$$

For $k_{j}=0, j=\overline{1, n-1}$ it follows that $\sum_{i=1}^{n} a_{i} d_{i}=0$.
For $k_{j_{0}}=1$ and $k_{j}=0, j \neq j_{0}$, it follows that $\sum_{i=1}^{n} a_{i} c_{i_{0}}=0$.
Let's consider the homogenous linear system of n equations with n unknowns:

$$
\left\{\begin{array}{l}
\sum_{i=1}^{n} x_{i} c_{i j}=0, \quad j=\overline{1, n-1} \\
\sum_{i=1}^{n} x_{i} d_{i}=0
\end{array}\right.
$$

which, obviously, has the solution $x_{i}=a_{i}, \quad i=\overline{1, n}$ different from the trivial one. Hence the determinant of the system is zero, i.e., the vectors $c_{j}=\left(c_{1 j}, \ldots, c_{n j}\right), j=\overline{1, n-1}$, $D=\left(d_{1}, \ldots, d_{n}\right)^{t}$ are linearly dependent.

But the solution being $(n-1)$-times undetermined it shows that $c_{j}, j=\overline{1, n-1}$ are linearly independent. Then $\left(c_{1}, \ldots, c_{n-1}\right)$ determines a free sub-module \mathbb{Z} of order $n-1$ in \mathbb{Z}_{n} of solutions for the given equation.

Let's see what can we obtain from (2). We have:

$$
0=\sum_{i=1}^{n} a_{i} x_{i}=\sum_{i=1}^{n} a_{i}\left(\sum_{e=1}^{r} u_{i e} P_{e}+v_{i}\right) .
$$

As above, we obtain:

$$
\sum_{i=1}^{n} a_{i} v_{i}=0 \text { and } \sum_{e=1}^{r} a_{i} u_{i e_{0}}=0
$$

similarly, the vectors $U_{h}=\left(u_{1 h}, \ldots, u_{n h}\right)$ are linearly independent, $h=\overline{1, r}, U_{h}, h=\overline{1, r}$ are $V=\left(v_{1}, \ldots, v_{n}\right)$ particular integer solutions of the homogenous linear equation.

Sub-case (a1)

$U, h=\overline{1, r}$ are linearly dependent. This gives $\left\{U_{1}, \ldots, U_{r}\right\}=$ the free sub-module of order r in \mathbb{Z}^{n} of solutions of the equation. Hence, there are solutions from $\left\{V_{1}, \ldots, V_{n-1}\right\}$ which are not from $\left\{U_{1}, \ldots, U_{r}\right\}$; this contradicts the fact that (2) is the general integer solution.

Sub-case (a2)

$U_{h}, h=\overline{1, r}, V$ are linearly independent. Then $\left\{U_{1}, \ldots, U_{r}\right\}+V$ is a linear variety of the dimension $<n-1=\operatorname{dim}\left\{V_{1}, \ldots, V_{n-1}\right\}$ and the conclusion can be similarly drawn.

Consider the case when $b \neq 0$. So, $\sum_{i=1}^{n} a_{i} x_{i}=b$.
Then:

$$
\sum_{i=1}^{n} a_{i}\left(\sum_{j=1}^{n-1} c_{i j} k_{j}+d_{i}\right)=\sum_{j=1}^{n-1}\left(\sum_{i=1}^{n} a_{i} c_{i j}\right) k_{j}+\sum_{i=1}^{n} a_{i} d_{i}=b ; \quad \forall\left(k_{1}, \ldots, k_{n-1}\right) \in \mathbb{Z}^{n-1}
$$

As in the previous case, we obtain $\sum_{i=1}^{n} a_{i} d_{i}=b$ and $\sum_{i=1}^{n} a_{i} c_{i j}=0, \quad \forall j=\overline{1, n-1}$.
The vectors $c_{j}=\left(c_{i j}, \ldots, c_{n j}\right)^{t}, j=\overline{1, n-1}$, are linearly independent because the solution is undetermined $(n-1)$-times.

Conversely, if $c_{1}, \ldots, c_{n-1}, D$ (where $D=\left(d_{1}, \ldots, d_{n}\right)^{t}$) were linearly dependent, it would mean that $D=\sum_{j=1}^{n-1} s_{j} c_{j}$ with all s_{j} scalar; it would also mean that

$$
b=\sum_{i=1}^{n} a_{i} d_{i}=\sum_{i=1}^{n} a_{i}\left(\sum_{j=1}^{n-1} s_{j} c_{i j}\right)=\sum_{j=1}^{n-1} s_{j}\left(\sum_{i=1}^{n} a_{i} c_{i j}\right)=0 .
$$

This is impossible.
(3) Then $\left\{c_{1}, \ldots, c_{n-1}\right\}+D$ is a linear variety.

Let us see what we can obtain from (2). We have:

$$
b=\sum_{i=1}^{n} a_{i} x_{i}=\sum_{i=1}^{n} a_{i}\left(\sum_{e=1}^{r} u_{i e} P_{e}+v_{i}\right)=\sum_{e=1}^{r}\left(\sum_{i=1}^{n} a_{i} u_{i e}\right) P_{e}+\sum_{i=1}^{n} a_{i} v_{i}
$$

and, similarly: $\sum_{i=1}^{n} a_{i} v_{i}=b$ and $\sum_{i=1}^{n} a_{i} u_{i e}=0, \quad \forall e=\overline{1, r}$, respectively. The vectors $U_{e}=\left(u_{1 e}, \ldots, u_{n e}\right)^{t}, e=\overline{1, r}$ are linearly independent because the solution is undetermined r-times.

A procedure like that applied in (3) shows that U_{1}, \ldots, U_{r}, V are linearly independent, where $V=\left(v_{1}, \ldots, v_{n}\right)^{t}$. Then $\left\{U_{1}, \ldots, U_{r}\right\}+V=$ a linear variety $=$ free submodule of order $r<n-1$. That is, we can find vectors from $\left\{c_{1}, \ldots, c_{n-1}\right\}+D$ which are not from $\left\{U_{1}, \ldots, U_{r}\right\}+V$, contradicting the "general" characteristic of the integer number solution. Hence, the general integer solution is undetermined $(n-1)$-times.

Theorem 2. The general integer solution of the homogeneous linear equation $\sum_{i=1}^{n} a_{i} x_{i}=0$ (all $a_{i} \in \mathbb{Z} \backslash\{0\}$) can be written under the form:
(4) $x_{i}=\sum_{j=1}^{n-1} c_{i j} k_{j}, i=\overline{1, n}$
(with $d_{1}=\ldots=d_{n}=0$).
Definition 6. This is called the standard form of the general integer solution of a homogeneous linear equation.

Proof:
We consider the general integer solution under the form:

$$
x_{i}=\sum_{j=1}^{n-1} c_{i j} P_{j}+d_{i}, \quad i=\overline{1, n}
$$

with not all $d_{i}=0$. We'll show that it can be written under the form (4). The homogeneous equation has the trivial solution $x_{i}=0, i=\overline{1, n}$. There is $\left(p_{1}^{0}, \ldots, p_{n-1}^{0}\right) \in \mathbb{Z}^{n-1}$ such that $\sum_{j=1}^{n-1} c_{i j} p_{j}^{0}+d_{i}=0, \quad \forall i=\overline{1, n}$.

Substituting: $P_{j}=k_{j}+p_{j}, j=\overline{1, n-1}$ in the form shown at the beginning of the demonstration, we will obtain form (4). We have to mention that the substitution does not diminish the degree of generality as $P_{j} \in \mathbb{Z} \Leftrightarrow k_{j} \in \mathbb{Z}$ because $j=\overline{1, n-1}$.

Theorem 3. The general integer solution of a non-homogeneous linear equation is equal to the general integer solution of its associated homogeneous linear equation plus any particular integer solution of the non-homogeneous linear equation.

Proof:

Let's consider that $x_{i}=\sum_{j=1}^{n-1} c_{i j} k_{j}, \quad i=\overline{1, n}$, is the general integer solution of the associated homogeneous linear equation and, again, let $x_{i}=v_{i}, i=\overline{1, n}$, be a particular integer solution of the non-homogeneous linear equation. Then $x_{i}=\sum_{j=1}^{n-1} c_{i j} k_{j}+v_{i}, \quad i=\overline{1, n}$, is the general integer solution of the non-homogeneous linear equation.

$$
\text { Actually, } \sum_{i=1}^{n} a_{i} x_{i}=\sum_{i=1}^{n} a_{i}\left(\sum_{j=1}^{n-1} c_{i j} k_{j}+v_{i}\right)=\sum_{i=1}^{n} a_{i}\left(\sum_{j=1}^{n-1} c_{i j} k_{j}\right)+\sum_{i=1}^{n} a_{i} v_{i}=b
$$

if $x_{i}=x_{i}^{0}, i=\overline{1, n}$, is a particular integer solution of the non-homogeneous linear equation, then $x_{i}=x_{i}-v_{i}, i=\overline{1, n}$, is a particular integer solution of the homogeneous linear equation: hence, there is $\left(k_{1}^{0}, \ldots, k_{n-1}^{0}\right) \in \mathbb{Z}^{n-1}$ such that

$$
\sum_{j=1}^{n-1} c_{i j} k_{j}^{0}=x_{i}^{0}-v_{i}, \quad \forall i=\overline{1, n}
$$

i.e.:

$$
\sum_{j=1}^{n-1} c_{i j} k_{j}^{0}+v_{i}=x_{i}^{0}, \quad \forall i=\overline{1, n}
$$

which was to be proven.
Theorem 4. If $x_{i}=\sum_{j=1}^{n-1} c_{i j} k_{j}, i=\overline{1, n}$ is the general integer solution of a homogeneous linear equation $\left(c_{i j}, \ldots, c_{n j}\right) \sim 1 \quad \forall j=\overline{1, n-1}$.

The demonstration is done by reduction ad absurdum. If $\exists j_{0}, 1 \leq j_{0} \leq n-1$ such that $\left(c_{i j_{0}}, \ldots, c_{n j_{0}}\right) \sim d_{j_{0}} \neq \pm 1$, then $c_{i j_{0}}=c_{i j_{0}}^{\prime} d_{i j_{0}}$ with $\left(c_{i j_{0}}^{\prime}, \ldots, c_{n j_{0}}^{\prime}\right) \sim 1, \quad \forall i=\overline{1, n}$.

But $x_{i}=c_{i j_{0}}^{\prime}, \quad i=\overline{1, n}, \quad$ represents a particular integer solution as

$$
\sum_{i=1}^{n} a_{i} x_{i}=\sum_{i=1}^{n} a_{i} c_{i j_{0}}^{\prime}=1 / d_{j_{0}} \cdot \sum_{i=1}^{n} a_{i} c_{i j_{0}}=0
$$

(because $x_{i}=c_{i j_{0}}, \quad i=\overline{1, n}$ is a particular integer solution from the general integer solution by introducing $k_{j_{0}}=1$ and $k_{j}=0, j \neq j_{0}$. But the particular integer solution $x_{i}=c_{i j_{0}}^{\prime}, \quad i=\overline{1, n}$, cannot be obtained by introducing integer number parameters (as it should) from the general integer solution, as from the linear system of n equations and $n-1$ unknowns, which is compatible. We obtain:

$$
x_{i}=\sum_{\substack{j=1 \\ j \neq j_{0}}}^{n} c_{i j} k_{j}+c_{i j_{0}}^{\prime} d_{j_{0}} k_{j_{0}}=c_{i j_{0}}^{\prime}, \quad i=\overline{1, n} .
$$

Leaving aside the last equation - which is a linear combination of other $n-1$ equations - a Kramerian system is obtained, as follows:

$$
k_{j_{0}}=\frac{\left|\begin{array}{l}
c_{11} \ldots \ldots c_{i j_{0}}^{\prime} \ldots \ldots . . c_{1, n-1} \\
c_{n-1,1} \ldots c_{n-j_{0}}^{\prime} \ldots c_{n-1 n-1}
\end{array}\right|}{\left|\begin{array}{l}
c_{11} \ldots \ldots c_{i j_{0}}^{\prime} \\
\vdots \\
j_{j_{0}} \ldots \ldots c_{1, n-1} \\
c_{n-1,1} \ldots c_{n-1 j_{0}}^{\prime} \\
d_{j_{0}} \ldots c_{n-1 n-1}
\end{array}\right|}=\frac{1}{d_{j_{0}}} \notin \mathbb{Z}
$$

Therefore the assumption is false (end of demonstration).
Theorem 5. Considering the equation (1) with $\left(a_{1}, \ldots, a_{n}\right) \sim 1, \quad b=0$ and the general integer solution $x_{i}=\sum_{j=1}^{n-1} c_{i j} k_{j}, i=\overline{1, n}$, then

$$
\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}\right) \sim\left(c_{i 1}, \ldots, c_{i n-1}\right), \quad \forall i=\overline{1, n} .
$$

Proof:
The demonstration is done by double divisibility.
Let's consider $i_{0}, \quad 1 \leq i_{0} \leq n$ arbitrary but fixed. $x_{i_{0}}=\sum_{j=1}^{n-1} c_{i_{0} j} k_{j}$. Consider the equation $\sum_{\mathrm{i} \neq \mathrm{i}_{0}} a_{i} x_{i}=-a_{i_{0}} x_{i_{0}}$. We have shown that $x_{i}=c_{i j}, i=\overline{1, n}$ is a particular integer solution irrespective of $j, a \leq j \leq n-1$.

The equation $\sum_{\mathrm{i} \neq \mathrm{i}_{0}} a_{i} x_{i}=-a_{i_{0}} c_{i_{0} j}$ obviously, has the integer solution $x_{i}=c_{i j}, \quad i \neq i_{0}$. Then $\left(a_{1}, \ldots, a_{i_{0}-1}, a_{i_{0}+1}, \ldots, a_{n}\right)$ divides $-a_{i_{0}} c_{i_{0} j}$ as we have assumed, it follows that $\left(a_{1}, \ldots, a_{n}\right) \sim 1$, and it follows that $\left(a_{1}, \ldots, a_{i_{0}-1}, a_{i_{0}+1}, \ldots, a_{n}\right) \mid c_{i_{0} j}$ irrespective of j. Hence $\left(a_{1}, \ldots, a_{i_{0}-1}, a_{i_{0}+1}, \ldots, a_{n}\right) \mid\left(c_{i_{0} 1}, \ldots, c_{i_{0} n-1}\right), \forall i=\overline{1, n}$, and the divisibility in one sense was proven.

Inverse divisibility:
Let us suppose the contrary and consider that $\exists i_{1} \in \overline{1, n}$ for which $\left(a_{1}, \ldots, a_{i_{1}-1}, a_{i_{1}+1}, \ldots, a_{n}\right) \sim d_{i_{1} 1} \neq d_{i_{1} 2} \sim\left(c_{i_{1} 1}, \ldots, c_{i_{1} n-1}\right)$; we have considered $d_{i_{1} 1}$ and $d_{i_{1} 2}$ without restricting the generality. $d_{i_{1} 1} \mid d_{i_{1} 2}$ according to the first part of the demonstration. Hence, $\exists d \in \mathbb{Z}$ such that $d_{i_{1} 2}=d \cdot d_{i_{1} 1},|d| \neq 1$.

$$
\begin{aligned}
& x_{i_{1}}=\sum_{j=1}^{n-1} c_{i_{j}} k_{j}=d \cdot d_{i_{1} 1} \sum_{j=1}^{n-1} c_{i_{1} j}^{\prime} k_{j} ; \\
& \sum_{i=1}^{n} a_{i} x_{i}=0 \Rightarrow \sum_{i \neq i_{i}}^{n} a_{i} x_{i}=-a_{i_{1}} x_{i_{1}} \sum_{i \neq i_{1}} a_{i} x_{i}=-a_{i_{1}} d \cdot d_{i_{1} 1} \sum_{j=1}^{n-1} c_{i_{j} j}^{\prime} k_{j},
\end{aligned}
$$

where $\left(c_{i_{1} 1}, \ldots, c_{i_{1} n-1}\right) \sim 1$.
The non-homogeneous linear equation $\sum_{i \neq i_{1}} a_{i} x_{i}=-a_{i_{1}} d_{i_{1} 1}$ has the integer solution because $a_{i_{1}} d_{i_{1} 1}$ is divisible by $\left(a_{1}, \ldots, a_{i_{1}-1}, a_{i_{1}+1}, \ldots, a_{n}\right)$. Let's consider that $x_{i}=x_{i}^{0}, i \neq i_{1}$, is its particular integer solution. It follows that the equation $\sum_{i=1}^{n} a_{i} x_{i}=0$ the particular solution $x_{i}=x_{i}^{0}, i \neq i_{1}, \quad x_{i_{1}}=d_{i_{1}}$, which is written as (5). We'll show that (5) cannot be obtained from the general solution by integer number parameters:

$$
\left\{\begin{array}{l}
\sum_{j=1}^{n-1} c_{i j} k_{j}=x_{i}^{0}, \quad i \neq i_{1} \tag{6}\\
d \cdot d_{i_{1} 1} \sum_{j=1}^{n-1} c_{i j} k_{j}=d_{i_{1} 1}
\end{array}\right.
$$

But the equation (6) does not have an integer solution because $d \cdot d_{i_{1} 1} \mid d_{i_{1} 1}$ thus, contradicting, the "general" characteristic of the integer solution.

As a conclusion we can write:
Theorem 6. Let's consider the homogeneous linear equation $\sum_{i=1}^{n} a_{i} x_{i}=0$, with all $a_{i} \in \mathbb{Z} \backslash\{0\}$ and $\left(a_{1}, \ldots, a_{n}\right) \sim 1$.

Let $x_{i}=\sum_{j=1}^{h} c_{i j} k_{j}, i=\overline{1, n}$, with all $c_{i j} \in \mathbb{Z}$, all k_{j} integer parameters and let's consider $h \in \mathbb{N}$ be a general integer solution of the equation. Then,

1) the solution is undetermined $(n-1)$-times;
2) $\forall j=\overline{1, n-1}$ we have $\left(c_{1 j}, \ldots, c_{n j}\right) \sim 1$;
3) $\forall i=\overline{1, n}$ we have $\left(c_{i 1}, \ldots, c_{i n-1}\right) \sim\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}\right)$.

The proof results from theorems 1,4 and 5 .
Note 1. The only equation of the form (1) that is undetermined n-times is the trivial equation $0 \cdot x_{1}+\ldots+0 \cdot x_{n}=0$.

Note 2. The converse of theorem 6 is not true.
Counterexample:
(7) $\left\{\begin{array}{l}x_{1}=-k_{1}+k_{2} \\ x_{2}=5 k_{1}+3 k_{2} \\ x_{3}=7 k_{1}-k_{2} ; \quad k_{1}, k_{2} \in \mathbb{Z}\end{array}\right.$
is not the general integer solution of the equation

$$
\begin{equation*}
-13 x_{1}+3 x_{2}-4 x_{3}=0 \tag{8}
\end{equation*}
$$

although the solution (7) verifies the points 1), 2) and 3) of theorem $6 .(1,7,2)$ is the particular integer solution of (8) but cannot be obtained by introducing integer number parameters in (7) because from

$$
\left\{\begin{array}{l}
-k_{1}+k_{2}=1 \\
5 k_{1}+3 k_{2}=7 \\
7 k_{1}-k_{2}=2
\end{array}\right.
$$

it follows that $k=\frac{1}{2} \notin \mathbb{Z}$ and $k=\frac{3}{2} \notin \mathbb{Z}$ (unique roots).

REFERENCE

[1] Smarandache, Florentin - Whole number solution of linear equations and systems - diploma thesis work, 1979, University of Craiova (under the supervision of Assoc. Prof. Dr. Alexandru Dincă)

