Ion Patrascu, Florentin Smarandache

Lemoine's Circles Radius

Calculus

In Ion Patrascu, Florentin Smarandache: "Complements
to Classic Topics of Circles Geometry". Brussels
(Belgium): Pons Editions, 2016

For the calculus of the first Lemoine's circle, we will first prove:

$1^{\text {st }}$ Theorem

(E. Lemoine - 1873)

The first Lemoine's circle divides the sides of a triangle in segments proportional to the squares of the triangle's sides.

Each extreme segment is proportional to the corresponding adjacent side, and the chord-segment in the Lemoine's circle is proportional to the square of the side that contains it.

Proof.

We will prove that $\frac{B C_{2}}{c^{2}}=\frac{C_{2} B_{1}}{a^{2}}=\frac{B_{1} C}{b^{2}}$.
In figure $1, K$ represents the symmedian center of the triangle $A B C$, and $A_{1} A_{2} ; B_{1} B_{2} ; C_{1} C_{2}$ represent Lemoine parallels.

The triangles $B C_{2} A_{1} ; C B_{1} A_{2}$ and $K C_{2} A_{1}$ have heights relative to the sides $B C_{2} ; B_{1} C$ and $C_{2} B_{1}$ equal $\left(A_{1} A_{2} \| B C\right)$.

Hence:

$$
\begin{equation*}
\frac{\text { Area }_{\Delta} B A_{1} C_{2}}{B C_{2}}=\frac{\text { Area }_{\Delta} K C_{2} A_{1}}{C_{2} B_{1}}=\frac{\text { Area }_{\Delta} C B_{1} A_{2}}{B_{1} C} . \tag{1}
\end{equation*}
$$

Figure 1
On the other hand: $A_{1} C_{2}$ and $B_{1} A_{2}$ being antiparallels with respect to $A C$ and $A B$, it follows that $\triangle B C_{2} A_{1} \sim \triangle B A C$ and $\triangle C B_{1} A_{2} \sim \triangle C A B$, likewise $K C_{2} \| A C$ implies: $\triangle K C_{2} B_{1} \sim \triangle A B C$.

We obtain:
$\frac{\text { Area }_{\Delta} B C_{2} A_{1}}{\text { Area }_{\Delta} A B C}=\frac{B C_{2}^{2}}{c^{2}}$;
$\frac{\text { Area }_{\Delta} K C_{2} B_{1}}{\text { Area }_{\Delta} A B C}=\frac{C_{2} B_{1}^{2}}{a^{2}} ;$
$\frac{\text { Area }_{\Delta} C B_{1} A_{2}}{\text { Area } a_{\Delta} A B C}=\frac{C B_{1}^{2}}{b^{2}}$.
If we denote Area $_{\Delta} A B C=S$, we obtain from the relations (1) and (2) that:

$$
\frac{B C_{2}}{c^{2}}=\frac{C_{2} B_{1}}{a^{2}}=\frac{B_{1} C}{b^{2}} .
$$

Consequences.

1. According to the $1^{\text {st }}$ Theorem, we find that:

$$
B C_{2}=\frac{a c^{2}}{a^{2}+b^{2}+c^{2}} ; B_{1} C=\frac{a b^{2}}{a^{2}+b^{2}+c^{2}} ; B_{1} C_{2}=\frac{a^{3}}{a^{2}+b^{2}+c^{2}} .
$$

2. We also find that:

$$
\frac{B_{1} C_{2}}{a^{3}}=\frac{A_{2} C_{1}}{b^{3}}=\frac{A_{1} B_{2}}{c^{3}},
$$

meaning that:
"The chords determined by the first Lemoine's circle on the triangle's sides are proportional to the cubes of the sides."
Due to this property, the first Lemoine's circle is known in England by the name of triplicate ratio circle.

$1^{\text {st }}$ Proposition.

The radius of the first Lemoine's circle, $R_{L_{1}}$ is given by the formula:

$$
\begin{equation*}
R_{L_{1}}^{2}=\frac{1}{4} \cdot \frac{R^{2}\left(a^{2}+b^{2}+c^{2}\right)+a^{2} b^{2} c^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}, \tag{3}
\end{equation*}
$$

where R represents the radius of the circle inscribed in the triangle $A B C$.

Proof.

Let L be the center of the first Lemoine's circle that is known to represent the middle of the segment $(O K)-O$ being the center of the circle inscribed in the triangle $A B C$.

Considering C 1 , we obtain $B B_{1}=\frac{a\left(c^{2}+a^{2}\right)}{a^{2}+b^{2}+c^{2}}$.
Taking into account the power of point B in relation to the first Lemoine's circle, we have:

$$
B C_{2} \cdot B B_{1}=B T^{2}-L T^{2}
$$

($B T$ is the tangent traced from B to the first Lemoine's circle, see Figure 1).

Hence: $R_{L_{1}}^{2}=B L^{2}-B C_{2} \cdot B B_{1}$.
The median theorem in triangle $B O K$ implies that:

$$
B L^{2}=\frac{2 \cdot\left(B K^{2}+B O^{2}\right)-O K^{2}}{4} .
$$

It is known that $K=\frac{\left(a^{2}+c^{2}\right) \cdot s_{b}}{a^{2}+b^{2}+c^{2}} ; S_{b}=\frac{2 a c \cdot m_{b}}{a^{2}+c^{2}}$, where S_{b} and m_{b} are the lengths of the symmedian and the median from B, and $O K^{2}=R^{2}-\frac{3 a^{2} b^{2} c^{2}}{\left(a^{2}+b^{2}+c^{2}\right)}$, see (3).

Consequently: $B K^{2}=\frac{2 a^{2} c^{2}\left(a^{2}+c^{2}\right)-a^{2} b^{2} c^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}$, and $4 B L^{2}=R^{2}+\frac{4 a^{2} c^{2}\left(a^{2}+c^{2}\right)+a^{2} b^{2} c^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}$.
As: $B C_{2} \cdot B B_{1}=\frac{a^{2} c^{2}\left(a^{2}+c^{2}\right)}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}$, by replacing in (4), we obtain formula (3).

$2^{\text {nd }}$ Proposition.

The radius of the second Lemoine's circle, $R_{L_{2}}$, is given by the formula:

$$
\begin{equation*}
R_{L_{2}}=\frac{a b c}{a^{2}+b^{2}+c^{2}} . \tag{5}
\end{equation*}
$$

Proof.

Figure 2
In Figure 2 above, $A_{1} A_{2} ; B_{1} B_{2} ; C_{1} C_{2}$ are Lemoine antiparallels traced through symmedian center K that is the center of the second Lemoine's circle, thence:

$$
R_{L_{2}}=K A_{1}=K A_{2}
$$

If we note with S and M the feet of the symmedian and the median from A, it is known that:

$$
\frac{A K}{K S}=\frac{b^{2}+c^{2}}{a^{2}}
$$

From the similarity of triangles $A A_{2} A_{1}$ and $A B C$, we have: $\frac{A_{1} A_{2}}{B C}=\frac{A K}{A M}$.

But: $\frac{A K}{A S}=\frac{b^{2}+c^{2}}{a^{2}+b^{2}+c^{2}}$ and $A S=\frac{2 b c}{b^{2}+c^{2}} \cdot m_{a}$.
$A_{1} A_{2}=2 R_{L_{2}}, B C=a$, therefore:
$R_{L_{2}}=\frac{A K \cdot a}{2 m_{a}}$,
and as $A K=\frac{2 b c \cdot m_{a}}{a^{2}+b^{2}+c^{2}}$, formula (5) is a consequence.

Remarks.

1. If we use $\operatorname{tg} \omega=\frac{4 S}{a^{2}+b^{2}+c^{2}}, \omega$ being the Brocard's angle (see [2]), we obtain: $R_{L_{2}}=R \cdot \operatorname{tg} \omega$.
2. If, in Figure 1, we denote with M_{1} the middle of the antiparallel $B_{2} C_{1}$, which is equal to $R_{L_{2}}$ (due to their similarity), we thus find from the rectangular triangle $L M_{1} C_{1}$ that:

$$
L C_{1}^{2}=L M_{1}^{2}+M_{1} C_{1}^{2}, \text { but } L M_{1}^{2}=\frac{1}{4} a^{2} \text { and } M_{1} C_{2}=
$$ $\frac{1}{2} R_{L_{2}}$; it follows that:

$$
R_{L_{1}}^{2}=\frac{1}{4}\left(R^{2}+R_{L_{2}}^{2}\right)=\frac{R^{2}}{4}\left(1+\operatorname{tg}^{2} \omega\right) .
$$

We obtain:

$$
R_{L_{1}}=\frac{R}{2} \cdot \sqrt{1+\operatorname{tg}^{2} \omega} .
$$

$3^{\text {rd }}$ Proposition.

The chords determined by the sides of the triangle in the second Lemoine's circle are respectively proportional to the opposing angles cosines.

Proof.

$K C_{2} B_{1}$ is an isosceles triangle, $\Varangle K C_{2} B_{1}=$ $\Varangle K B_{1} C_{2}=\Varangle A$; as $K C_{2}=R_{L_{2}}$ we have that $\cos A=\frac{C_{2} B_{1}}{2 R_{L_{2}}}$, deci $\frac{C_{2} B_{1}}{\cos A}=2 R_{L_{2}}$, similary: $\frac{A_{2} C_{1}}{\cos B}=\frac{B_{2} A_{1}}{\cos C}=2 R_{L_{2}}$.

Remark.

Due to this property of the Lemoine's second circle, in England this circle is known as the cosine circle.

References.

[1] D. Efremov, Noua geometrie a triunghiului [The New Geometry of the Triangle], translation from Russian into Romanian by Mihai Miculița, Cril Publishing House, Zalau, 2010.
[2] F. Smarandache and I. Patrascu, The Geometry of Homological Triangles, The Education Publisher, Ohio, USA, 2012.
[3] I. Patrascu and F. Smarandache, Variance on Topics of Plane Geometry, Educational Publisher, Ohio, USA, 2013.

