Nedians and Triangles with the Same Coefficient of Deformation

Ion Pătraşcu - National College Frații Buzeşti, Craiova, Romania

Florentin Smarandache - University of New Mexico, Gallup, NM, USA
In [1] Dr. Florentin Smarandache generalized several properties of the nedians. Here, we will continue the series of these results and will establish certain connections with the triangles which have the same coefficient of deformation.

Definition 1

The line segments that have their origin in the triangle's vertex and divide the opposite side in n equal segments are called nedians.

We call the nedian $A A_{i}$ being of order $i\left(i \in N^{*}\right)$, in the triangle $A B C$, if A_{i} divides the side $(B C)$ in the rapport $\frac{i}{n}\left(\overrightarrow{B A}_{i}=\frac{i}{n} \cdot \overrightarrow{B C}\right.$ or $\left.\overrightarrow{C A}_{i}=\frac{i}{n} \cdot \overrightarrow{C B}, 1 \leq i \leq n-1\right)$

Observation 1

The medians of a triangle are nedians of order 1 , in the case when $n=3$, these are called tertian.

We'll recall from [1] the following:

Proposition 1

Using the nedians of the same of a triangle, we can construct a triangle.

Proposition 2

The sum of the squares of the lengths of the nedians of order i of a triangle $A B C$ is given by the following relation:

$$
\begin{equation*}
A A_{i}^{2}+B B_{i}^{2}+C C_{i}^{2}=\frac{i^{2}-i n+n^{2}}{n^{2}}\left(a^{2}+b^{2}+c^{2}\right) \tag{1}
\end{equation*}
$$

We'll prove

Proposition3.

The sum of the squares of the lengths of the sides of the triangle $A_{0} B_{0} C_{0}$, determined by the intersection of the nedians of order i of the triangle $A B C$ is given by the following relation:

$$
\begin{equation*}
A_{0} B_{0}^{2}+B_{0} C_{0}^{2}+C_{0} A_{0}^{2}=\frac{(n-2 i)^{2}}{i^{2}-i n+n^{2}}\left(a^{2}+b^{2}+c^{2}\right) \tag{2}
\end{equation*}
$$

Fig. 1

We noted

$$
\left\{A_{0}\right\}=C C_{i} \cap A A_{i},\left\{B_{0}\right\}=A A_{i} \cap B B_{i},\left\{C_{0}\right\}=B B_{i} \cap C C_{i} .
$$

Proof
We'll apply the Menelaus 'theorem in the triangle $A A_{i} C$ for the transversals $B-B_{0}-B_{i}$, see Fig. 1.

$$
\begin{equation*}
\frac{B A_{i}}{B C} \cdot \frac{B_{i} C}{B_{i} A} \cdot \frac{B_{0} A}{B_{0} A_{i}}=1 \tag{3}
\end{equation*}
$$

Because $B A_{i}=\frac{i a}{n}, B_{i} C=\frac{i b}{n}, B_{i} A=\frac{(n-i) b}{n}$, from (3) it results that:

$$
\begin{equation*}
B_{0} A=\frac{n(n-i)}{i^{2}-i n+n^{2}} A A_{i} \tag{4}
\end{equation*}
$$

The Menelaus 'theorem applied in the triangle $A A_{i} B$ for the transversal $C-C_{0}-C_{i}$ gives

$$
\begin{equation*}
\frac{C A_{i}}{C B} \cdot \frac{C_{i} B}{C_{i} A} \cdot \frac{A_{0} A}{A_{0} A_{i}}=1 \tag{5}
\end{equation*}
$$

But $C A_{i}=\frac{(n-i) a}{n}, C_{i} B=\frac{(n-i) c}{n}, C_{i} A=\frac{i c}{n}$, which substituted in (5), gives

$$
\begin{equation*}
A A_{0}=\frac{i n}{i^{2}-i n+n^{2}} A A_{i} \tag{6}
\end{equation*}
$$

It is observed that $A_{0} B_{0}=A B_{0}-A A_{0}$ and using the relation (4) and (6) we find:

$$
\begin{equation*}
A_{0} B_{0}=\frac{n(n-2 i)}{i^{2}-i n+n^{2}} A A_{i} \tag{7}
\end{equation*}
$$

Similarly, we obtain:

$$
\begin{align*}
& B_{0} C_{0}=\frac{n(n-2 i)}{i^{2}-i n+n^{2}} B B_{i} \tag{8}\\
& C_{0} A_{0}=\frac{n(n-2 i)}{i^{2}-i n+n^{2}} C C_{i} \tag{9}
\end{align*}
$$

Using the relations (7), (8) and (9), after a couple of computations we obtain the relation (2).

Observation 2.

The triangle formed by the nedians of order i as sides is similar with the triangle formed by the intersections of the nedians of order i.

Indeed, the relations (7), (8) and (9) show that the sides $A_{0} B_{0}, B_{0} C_{0}, C_{0} A_{0}$ are proportional with $A A_{i}, B B_{i}, C C_{i}$

The Russian mathematician V. V. Lebedev introduces in [2] the notion of coefficient of deformation of a triangle. To define this notion we need a couple of definitions and observations.

Definition 2

If $A B C$ is a triangle and in its exterior on its sides are constructed the equilateral triangles $B C A_{1}, C A B_{1}, A B C_{1}$, then the equilateral triangle $O_{1} O_{2} O_{3}$ formed by the centers of the circumscribed circles to the equilateral triangles, described above, is called the exterior triangle of Napoleon.

If the equilateral triangles $B C A_{1}, C A B_{1}, A B C_{1}$ intersect in the interior of the triangle $A B C$ then the equilateral triangle $O_{1}{ }^{\prime} O_{2}{ }^{\prime} O_{3}{ }^{\prime}$ formed by the centers of the circumscribed circles to these triangles is called the interior triangle of Napoleon.

Fig. 2

Fig. 3

Observation 3

In figure 2 is represented the external triangle of Napoleon and in figure 3 is represented the interior triangle of Napoleon.

Definition 3

A coefficient of deformation of a triangle is the rapport between the side of the interior triangle of Napoleon and the side of the exterior triangle of Napoleon corresponding to the same triangle.

Observation 4

The coefficient of deformation of the triangle $A B C$ is

$$
k=\frac{O_{1}^{\prime} O_{2}{ }^{\prime}}{O_{1} O_{2}}
$$

Proposition 4

The coefficient of deformation k of triangle $A B C$ ha the following formula:

$$
\begin{equation*}
k=\left(\frac{a^{2}+b^{2}+c^{2}-4 s \sqrt{3}}{a^{2}+b^{2}+c^{2}+4 s \sqrt{3}}\right)^{\frac{1}{2}} \tag{10}
\end{equation*}
$$

where s is the aria of the triangle $A B C$.

Proof

We'll apply the cosine theorem in the triangle $\mathrm{CO}_{1}{ }^{\prime} \mathrm{O}_{2}{ }^{\prime}$ (see Fig. 3), in which

$$
C O_{1}^{\prime}=\frac{a \sqrt{3}}{3}, C O_{2}^{\prime}=\frac{b \sqrt{3}}{3}, \text { and } m\left(\Varangle O_{1} C O_{2}^{\prime}\right)=C-60^{\circ} .
$$

We have

$$
O_{1}^{\prime} O_{2}^{\prime 2}=\frac{3 a^{2}}{9}+\frac{3 b^{2}}{9}-2 \frac{a b}{3} \cos \left(C-60^{\circ}\right)
$$

Because

$$
\begin{aligned}
& \cos \left(C-60^{\circ}\right)=\cos C \cdot \cos 60^{\circ}+\sin 60^{\circ} \cdot \sin C=\frac{1}{2} \cos C+\frac{\sqrt{2}}{2} \sin C \text { and } \\
& \cos C=\frac{b^{2}+a^{2}-c^{2}}{2 a b}, \text { and } \\
& a b \sin C=2 s,
\end{aligned}
$$

we obtain

$$
\begin{equation*}
O_{1}^{\prime} O_{2}^{\prime 2}=\frac{a^{2}+b^{2}+c^{2}-4 s \sqrt{3}}{6} \tag{11}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
O_{1} O_{2}^{2}=\frac{a^{2}+b^{2}+c^{2}+4 s \sqrt{3}}{6} \tag{12}
\end{equation*}
$$

By dividing the relations (11) and (12) and resolving the square root we proved the proposition.

Observation 5

In an equilateral triangle the deformation coefficient is $k=0$. In general, for a triangle $A B C, 0 \leq k<1$.

Observation 6

From (11) it results that in a triangle is true the following inequality:

$$
\begin{equation*}
a^{2}+b^{2}+c^{2} \geq 4 s \sqrt{3} \tag{13}
\end{equation*}
$$

which is the inequality Weitzeböck.

Observation 7

In a triangle there following inequality - stronger than (13) - takes also place:

$$
\begin{equation*}
a^{2}+b^{2}+c^{2} \geq 4 s \sqrt{3}+(a-b)^{2}+(b-c)^{2}+(c-a)^{2} \tag{14}
\end{equation*}
$$

which is the inequality of Finsher - Hadwiger.

Observation 8

It can be proved that in a triangle the coefficient of deformation can be defined by the

$$
\begin{equation*}
k=\frac{A A_{1}{ }^{\prime}}{A A_{1}} \tag{15}
\end{equation*}
$$

Definition 4

We define the Brocard point in triangle $A B C$ the point Ω from the triangle plane, with the property:

$$
\begin{equation*}
\Varangle \Omega A B \equiv \Varangle \Omega B C \equiv \Varangle \Omega C A \tag{16}
\end{equation*}
$$

The common measure of the angles from relation (16) is called the Brocard angle and is noted

$$
\Varangle \Omega A B=\omega
$$

Observation 9

A triangle $A B C$ has, in general, two points Brocard Ω and Ω^{\prime} which are isogonal conjugated (see Fig. 4)

Proposition 5

In a triangle $A B C$ takes place the following relation:

$$
\begin{equation*}
\operatorname{ctg} \omega=\frac{a^{2}+b^{2}+c^{2}}{4 s} \tag{17}
\end{equation*}
$$

Fig. 4

Proof

We'll show, firstly, that in a non-rectangle triangle $A B C$ is true the following relation:

$$
\begin{equation*}
\operatorname{ctg} \omega=\operatorname{ctg} A+\operatorname{ctg} B+c \operatorname{tg} C \tag{18}
\end{equation*}
$$

Applying the \sin theorem in triangle $A \Omega B$ and $A \Omega C$, we obtain

$$
\frac{B \Omega}{\sin \omega}=\frac{c}{\sin B \Omega A} \text { and } \frac{A \Omega}{\sin \omega}=\frac{b}{\sin A \Omega C}
$$

Because $m(\Varangle B \Omega A)=180^{\circ}-m(\Varangle B)$ and $m(\Varangle A \Omega C)=180^{\circ}-m(\Varangle A)$ from the precedent relations we retain that

$$
\begin{equation*}
\frac{A \Omega}{B \Omega}=\frac{b}{c} \frac{\sin B}{\sin A} \tag{19}
\end{equation*}
$$

On the other side also from the sin theorem in triangle $A \Omega B$, we obtain

$$
\begin{equation*}
\frac{A \Omega}{B \Omega}=\frac{\sin (B-\omega)}{\sin \omega} \tag{20}
\end{equation*}
$$

Working out $\sin (B-\omega)$, taking into account that $\frac{b}{c}=\frac{\sin B}{\sin C}$ and that $\sin B=\sin (A+C)$, we obtain (18).

In a triangle $A B C$ is true the relation $\operatorname{ctg} A=\frac{a^{2}+b^{2}+c^{2}}{4 s}(19)$ and the analogues.

Fig. 5
Indeed, if $m(\Varangle A)<90^{\circ}$ and B^{\prime} is the orthogonal projection of B on $A C$ (see Fig. 5), then

$$
\operatorname{ctg} A=\frac{A B^{\prime}}{B B^{\prime}}=\frac{c \cdot \cos A}{B B^{\prime}}
$$

Because $B B^{\prime}=\frac{2 s}{b}$ it results that $\operatorname{ctg} A=\frac{2 b c \cos A}{4 s}$
From the cosine theorem we get

$$
2 b c \cos A=b^{2}+c^{2}-a^{2}
$$

Replacing in (18) the $\operatorname{ctg} A, \operatorname{ctg} B, \operatorname{ctg} C$, we obtain (17)

Observation 10

The coefficient of deformation k of triangle $A B C$ is given by

$$
\begin{equation*}
k=\left(\frac{\operatorname{ctg} \omega-\sqrt{3}}{\operatorname{ctg} \omega+\sqrt{3}}\right)^{\frac{1}{2}} \tag{21}
\end{equation*}
$$

Fig. 6
Indeed, from (10) and (17), it results, without difficulties (21)
Proposition 6 (V.V. Lebedev)
The necessary and sufficient condition for two triangles to have the same coefficient of deformation is to have the same Brocard angle.

Proof

If the triangles $A B C$ and $A_{1} B_{1} C_{1}$ have equal coefficients of deformation $k=k_{1}$ then from relation 21 it results

$$
\frac{\operatorname{ctg} \omega-\sqrt{3}}{\operatorname{ctg} \omega+\sqrt{3}}=\frac{\operatorname{ctg} \omega_{1}-\sqrt{3}}{\operatorname{ctg} \omega_{1}+\sqrt{3}}
$$

Which leads to $\operatorname{ctg} \omega=\operatorname{ctg} \omega_{1}$ with the consequence that $\omega=\omega_{1}$.
Reciprocal, if $\omega=\omega_{1}$, immediately results, using (21), that takes place $k=k_{1}$.

Proposition 7

Two triangles $A B C$ and $A_{1} B_{1} C_{1}$ have the same coefficient of deformation if and only if

$$
\begin{equation*}
\frac{s_{1}}{s}=\frac{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}{a^{2}+b^{2}+c^{2}} \tag{22}
\end{equation*}
$$

(s_{1} being the aria of triangle $A_{1} B_{1} C_{1}$, with the sides a_{1}, b_{1}, c_{1})
Proof
If ω, ω_{1} are the Brocard angles of triangles $A B C$ and $A_{1} B_{1} C_{1}$ then, taking into consideration (17) and Proposition 6, we'll obtain (22). Also from (22) taking into consideration of (17) and Proposition 6, we'll get $k=k_{1}$.

Proposition 8

Triangle $A_{i} B_{i} C_{i}$ formed by the legs of the nediands of order i of triangle $A B C$ and triangle $A B C$ have the same coefficient of deformation.

Proof
We'll use Proposition 7, applying the cosine theorem in triangle $A_{i} B_{i} C_{i}$, we'll obtain

$$
B_{i} C_{i}^{2}=A C_{i}^{2}+A B_{i}^{2}-2 A C_{i} A B_{i} \cos A
$$

Because

$$
A C_{i}=\frac{i c}{n}, A B_{i}=\frac{(n-i) b}{n}
$$

it results

$$
B_{i} C_{i}^{2}=\frac{i^{2} c^{2}}{n^{2}}+\frac{(n-i)^{2} b^{2}}{n^{2}}-\frac{2 i(n-i) b c \cos A}{n^{2}}
$$

Fig. 7
The cosin theorem in the triangle $A B C$ gives
$2 b c \cos A=b^{2}+c^{2}-a^{2}$
which substituted above gives

$$
\begin{aligned}
& B_{i} C_{i}^{2}=\frac{i^{2} c^{2}+(n-i)^{2} b^{2}+i(n-i)\left(a^{2}-b^{2}-c^{2}\right)}{n^{2}} \\
& B_{i} C_{i}^{2}=\frac{a^{2}\left(i n-i^{2}\right)+b^{2}\left(n^{2}-3 i n+2 i^{2}\right)+c^{2}\left(2 i^{2}-i n\right)}{n^{2}}
\end{aligned}
$$

Similarly we'll compute $C_{i} A_{i}{ }^{2}$ and $A_{i} B_{i}{ }^{2}$
It results

$$
\begin{equation*}
\frac{A_{i} B_{i}^{2}+B_{i} C_{i}^{2}+C_{i} A_{i}^{2}}{a^{2}+b^{2}+c^{2}}=\frac{n^{2}-2 i n+3 i^{2}}{n^{2}} \tag{23}
\end{equation*}
$$

If we note

$$
s_{i}=\operatorname{Aria}_{\Delta} A_{i} B_{i} C_{i}
$$

We obtain

$$
\begin{equation*}
s_{i}=s-\left(\text { Aria }_{\Delta} A B_{i} C_{i}+\text { Aria }_{\Delta} B A_{i} C_{i}+\text { Aria }_{\Delta} C A_{i} B_{i}\right) \tag{24}
\end{equation*}
$$

But

$$
\begin{aligned}
& \text { Aria }_{\Delta} A B_{i} C_{i}=\frac{1}{2} A C_{i} \cdot A B_{i} \sin A \\
& \text { Aria }_{\Delta} A B_{i} C_{i}=\frac{1}{2} \frac{i(n-i) b \cdot c}{n^{2}} \sin A=\frac{i(n-i) \cdot s}{n^{2}}
\end{aligned}
$$

Similarly, we find that

$$
\text { Aria }_{\Delta} B A_{i} C_{i}=\text { Aria }_{\Delta} C A_{i} B_{i}=\frac{i(n-i) \cdot s}{n^{2}}
$$

Revisiting (23) we get that

$$
s_{i}=\frac{s n^{2}-3 i n+3 i^{2}}{n^{2}}
$$

therefore,

$$
\begin{equation*}
\frac{s_{i}}{s}=\frac{n^{2}-3 i n+3 i^{2}}{n^{2}} \tag{25}
\end{equation*}
$$

The relations (23), (25) and Proposition 7 will imply the conclusion.

Proposition 9

The triangle formed by the medians of a given triangle, as sides, and the given triangle have the same coefficient of deformation.

Proof

The medians are nedians of order I. Using (1), it results

$$
\begin{equation*}
A A_{i}^{2}+B B_{i}^{2}+C C_{i}^{2}=\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right) \tag{26}
\end{equation*}
$$

The proposition will be proved if we'll show that the rapport between the aria of the formed triangle with the medians of the given triangle and the aria of the given triangle is $\frac{3}{4}$.

Fig. 9
If in triangle $A B C$ we prolong the median $A A_{1}$ such that $A_{1} D=G A_{1}$ (G being the center of gravity of the triangle $A B C$), then the quadrilateral $B G C D$ is a parallelogram (see Fig. 9). Therefore $C D=B G$. It is known that $B G=\frac{2}{3} B B_{1}, C G=\frac{2}{3} C C_{1}$ and from construction we have that $G D=\frac{2}{3} A A_{1}$. Triangle $G D C$ has the sides equal to $\frac{2}{3}$ from the length of the medians of the triangle $A B C$. Because the median of a triangle divides the triangle in two equivalent triangles and the gravity center of the triangle forms with the vertexes of the triangle three equivalent triangle, it results that Aria $_{\Delta} G D C=\frac{1}{3} s$. On the other side the rapport of the arias of two similar triangles is equal with the squared of their similarity rapport, therefore, if we note s_{1} the aria of the triangle formed by the medians, we have $\frac{\text { Aria }_{\Delta} G D C}{s_{1}}=\left(\frac{2}{3}\right)^{2}$.

We find that $\frac{s_{1}}{s}=\frac{3}{4}$, which proves the proposition.

Proposition 10

The triangle formed by the intersections of the tertianes of a given triangle and the given triangle have the same coefficient of deformation.

Proof

If $A_{0} B_{0} C_{0}$ is the triangle formed by the intersections of the tertianes, from relation (2) we'll find

$$
\frac{A_{0} B_{0}^{2}+B_{0} C_{0}^{2}+C_{0} A_{0}^{2}}{a^{2}+b^{2}+c^{2}}=\frac{1}{7}
$$

Fig 10
We note s_{0} the aria of triangle $A_{0} B_{0} C_{0}$, we'll prove that $\frac{s_{0}}{s}=\frac{1}{7}$.
From the formulae (6) and (7), it is observed that $A_{0}=A_{0} B_{0}$ and $C C_{0}=C_{0} A_{0}$.
Using the median's theorem in a triangle to determine that in that triangle two triangle are equivalent, we have that:

$$
\begin{aligned}
& \text { Aria }_{\Delta} A A_{0} C_{0}=\text { Aria }_{\Delta} A C_{0} C=\text { Aria }_{\Delta} A_{0} B_{0} C_{0}= \\
& =\text { Aria }_{\Delta} C B_{0} C_{0}=\text { Aria }_{\Delta} C B B_{0}=\text { Aria }_{\Delta} B B_{0} A_{0}=\text { Aria }_{\Delta} A B A_{0}
\end{aligned}
$$

Because the sum of the aria of these triangles is s, it results that $s_{0}=\frac{1}{7} s$, which shows what we had to prove.

Proposition 11

We made the observation that the triangle $A_{0} B_{0} C_{0}$ and the triangle formed by the tertianes $A A_{1}, B B_{1}, C C_{1}$ as sides are similar. Two similar triangles have the same Brocard angle, therefore the same coefficient of deformation. Taking into account Proposition 10, we obtain the proof of the statement

Observation 11

From the precedent observations it results that being given a triangle, the triangles formed by the tertianes intersections with the triangle as sides, the intersections of the tertianes of the triangle have the same coefficient of deformation.

References

[1] F. Smarandache - Généralisations et généralites - Edition Nouvelle, 1984, Fès, Maroc
[2] V. V. Lebedev - Nekatoroie svoistva trengolnikov Napoleone - Matematika v schole, no.6/1962
[3] V. Gh. Vodă - Triunghiul - ringul cu trei colțuri - Editura Albatros, Bucureşti, 1979
[4] R. A. Johnson - Advanced Euclidean Geometry - Dover Publications, Inc. Mineola, New York, 2007.

