Neuberg's Orthogonal Circles

In Ion Patrascu, Florentin Smarandache: "Complements
to Classic Topics of Circles Geometry". Brussels
(Belgium): Pons Editions, 2016

In this article, we highlight some metric properties in connection with Neuberg's circles and triangle.

We recall some results that are necessary.

$1^{\text {st }}$ Definition.

It's called Brocard's point of the triangle $A B C$ the point Ω with the property: $\Varangle \Omega A B=\Varangle \Omega B C=\Varangle \Omega C A$. The measure of the angle $\Omega A B$ is denoted by ω and it is called Brocard's angle. It occurs the relationship:

$$
\operatorname{ctg} \omega=\operatorname{ctg} A+\operatorname{ctg} B+\operatorname{ctg} C \text { (see [1]). }
$$

Figure 1.

$2^{\text {nd }}$ Definition.

Two triangles are called equibrocardian if they have the same Brocard's angle.

$3^{\text {rd }}$ Definition.

The locus of points M from the plane of the triangle located on the same side of the line $B C$ as A and forming with $B C$ an equibrocardian triangle with $A B C$, containing the vertex A of the triangle, it's called A-Neuberg' circle of the triangle $A B C$.

We denote by N_{a} the center of A-Neuberg' circle by radius n_{a} (analogously, we define B -Neuberg' and C-Neuberg' circles).

We get that $m\left(B N_{a} C\right)=2 \omega$ and $n_{a}=\frac{a}{2} \sqrt{\operatorname{ctg}^{2} \omega-3}$ (see [1]).

The triangle $N_{a} N_{b} N_{c}$ formed by the centers of Neuberg's circles is called Neuberg's triangle.

$1^{\text {st }}$ Proposition.

The distances from the center circumscribed to the triangle $A B C$ to the vertex of Neuberg's triangle are proportional to the cubes of $A B C$ triangle's sides lengths.

Proof.

Let O be the center of the circle circumscribed to the triangle $A B C$ (see Figure 2).

Figure 2.
The law of cosines applied in the triangle $O N_{a} B$ provides:

$$
\frac{O N_{a}}{\sin \left(N_{a} B O\right)}=\frac{R}{\sin \omega} .
$$

But $m\left(\Varangle N_{a} B O\right)=m\left(\Varangle N_{a} B C\right)-m(\Varangle O B C)=A-\omega$.
We have that $\frac{O N_{a}}{\sin (A-\omega)}=\frac{R}{\sin \omega}$.
But

$$
\frac{\sin (A-\omega)}{\sin \omega}=\frac{C \Omega}{\mathrm{~A} \Omega}=\frac{\frac{a}{c} \cdot 2 R \sin \omega}{\frac{b}{a} \cdot 2 R \sin \omega}=\frac{a^{3}}{a b c}=\frac{a^{3}}{4 R S},
$$

S being the area of the triangle $A B C$.

It follows that $O N_{a}=\frac{a^{3}}{4 S}$, and we get that $\frac{O N_{a}}{a^{3}}=$ $\frac{O N_{b}}{b^{3}}=\frac{O N_{c}}{c^{3}}$.

Consequence.
In a triangle ABC , we have:

1) $\quad O N_{a} \cdot O N_{b} \cdot O N_{c}=R^{3}$;
2) $\operatorname{ctg} \omega=\frac{O N_{a}}{a}+\frac{O N_{b}}{b}+\frac{O N_{c}}{c}$.

$2^{\text {nd }}$ Proposition.

If $N_{a} N_{b} N_{c}$ is the Neuberg's triangle of the triangle $A B C$, then:

$$
N_{a} N_{b}^{2}=\frac{\left(a^{2}+b^{2}\right)\left(a^{4}+b^{4}\right)-a^{2} b^{2} c^{2}}{2 a^{2} b^{2}+2 b^{2} c^{2}+2 c^{2} a^{2}-a^{4}-b^{4}-c^{4}} .
$$

(The formulas for $N_{b} N_{c}$ and $N_{c} N_{a}$ are obtained from the previous one, by circular permutations.)

Proof.

We apply the law of cosines in the triangle $N_{a} O N_{c}$:

$$
\begin{gathered}
O N_{a}=\frac{a^{3}}{4 S}, O N_{b}=\frac{b^{3}}{4 S}, m\left(\Varangle N_{a} O N_{b}\right)=180^{0}-\hat{c} . \\
N_{a} N_{b}^{2}=\frac{a^{6}+b^{6}-2 a^{3} b^{3} \cos \left(180^{0}-c\right)}{16 S^{2}} \\
=\frac{a^{6}+b^{6}+2 a^{3} b^{3} \cos C}{16 S^{2}} .
\end{gathered}
$$

But the law of cosines in the triangle $A B C$ provides

$$
2 \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

and, from din Heron's formula, we find that

$$
16 S^{2}=2 a^{2} b^{2}+2 b^{2} c^{2}+2 c^{2} a^{2}-a^{4}-b^{4}-c^{4}
$$

Substituting the results above, we obtain, after a few calculations, the stated formula.

$4^{\text {th }}$ Definition.

Two circles are called orthogonal if they are secant and their tangents in the common points are perpendicular.

$3^{\text {rd }}$ Proposition.

(Gaultier - 18B)
Two circles $\mathcal{C}\left(O_{1}, r_{1}\right), \mathcal{C}\left(O_{2}, r_{2}\right)$ are orthogonal if and only if

$$
r_{1}^{2}+r_{2}^{2}=O_{1} O_{2}^{2}
$$

Proof.

Let $\mathcal{C}\left(O_{1}, r_{1}\right), \mathcal{C}\left(O_{2}, r_{2}\right)$ be orthogonal (see Figure 3); then, if A is one of the common points, the triangle $O_{1} \mathrm{AO}_{2}$ is a right triangle and the Pythagorean Theorem applied to it, leads to $r_{1}{ }^{2}+r_{2}{ }^{2}=O_{1} O_{2}{ }^{2}$.

Reciprocally.

If the metric relationship from the statement occurs, it means that the triangle $O_{1} A O_{2}$ is a right triangle, therefore A is their common point (the relationship $r_{1}{ }^{2}+r_{2}{ }^{2}=O_{1} O_{2}{ }^{2}$ implies $r_{1}{ }^{2}+r_{2}{ }^{2}>$ $O_{1} O_{2}{ }^{2}$), then $O_{1} A \perp O_{2} A$, so $O_{1} A$ is tangent to the circle $\mathcal{C}\left(O_{2}, r_{2}\right)$ because it is perpendicular in A on radius $O_{2} A$, and as well $O_{2} A$ is tangent to the circle $\mathcal{C}\left(O_{1}, r_{1}\right)$, therefore the circles are orthogonal.

Figure 3.

$4^{\text {th }}$ Proposition.

B-Neuberg's and C-Neuberg's circles associated to the right triangle $A B C$ (in A) are orthogonal.

Proof.

$$
\begin{aligned}
& \text { If } m(\hat{A})=90^{0} \text {, then } N_{b} N_{c}^{2}=\frac{b^{6}+c^{6}}{16 S} . \\
& n_{b}=\frac{b}{2} \sqrt{\operatorname{ctg}^{2} \omega-3} ; n_{c}=\frac{c}{2} \sqrt{\operatorname{ctg}^{2} \omega-3 .} \\
& \text { But } \operatorname{ctg} \omega-\frac{a^{2}+b^{2}+c^{2}}{4 S}=\frac{b^{2}+c^{2}}{2 S}=\frac{a^{2}}{b c} .
\end{aligned}
$$

It was taken into account that $a^{2}=b^{2}+c^{2}$ and $2 S=b c$.

$$
\begin{gathered}
\operatorname{ctg}^{2} \omega-3=\frac{a^{4}}{b^{2} c^{2}}-3=\frac{\left(b^{2}+c^{2}\right)^{2}-3 b^{2} c^{2}}{b^{2} c^{2}} \\
\operatorname{ctg}^{2} \omega-3=\frac{b^{4}+c^{4}-b^{2} c^{2}}{b^{2} c^{2}} \\
n_{b}^{2}+n_{c}^{2}=\frac{b^{4}+c^{4}-b^{2} c^{2}}{b^{2} c^{2}}\left(\frac{b^{2}+c^{2}}{4}\right) \\
=\frac{\left(b^{2}+c^{2}\right)\left(b^{4}+c^{4}-b^{2} c^{2}\right)}{4 b^{2} c^{2}}=\frac{b^{6}+c^{6}}{16 S^{2}}
\end{gathered}
$$

By $N_{b}^{2}+N_{c}^{2}=N_{b} N_{c}^{2}$, it follows that B-Neuberg's and C-Neuberg's circles are orthogonal.

References.

[1] F. Smarandache, I. Patrascu: The Geometry of Homological Triangles. Columbus: The Educational Publisher, Ohio, USA, 2012.
[2] T. Lalescu: Geometria triunghiului [The Geometry of the Triangle]. Craiova: Editura Apollo, 1993.
[3] R. A. Johnson: Advanced Euclidian Geometry. New York: Dover Publications, 2007.

