Ion Patrascu, Florentin Smarandache

Neuberg's Orthogonal Circles

In Ion Patrascu, Florentin Smarandache: "Complements to Classic Topics of Circles Geometry". Brussels (Belgium): Pons Editions, 2016 In this article, we highlight some metric properties in connection with **Neuberg's** circles and triangle.

We recall some results that are necessary.

1st Definition.

It's called Brocard's point of the triangle *ABC* the point Ω with the property: $\ll \Omega AB = \ll \Omega BC = \ll \Omega CA$. The measure of the angle ΩAB is denoted by ω and it is called Brocard's angle. It occurs the relationship:

 $\operatorname{ctg}\omega = \operatorname{ctg}A + \operatorname{ctg}B + \operatorname{ctg}C$ (see [1]).

Figure 1.

2nd Definition.

Two triangles are called equibrocardian if they have the same Brocard's angle.

3rd Definition.

The locus of points M from the plane of the triangle located on the same side of the line BC as A and forming with BC an equibrocardian triangle with ABC, containing the vertex A of the triangle, it's called A-Neuberg' circle of the triangle ABC.

We denote by N_a the center of A-Neuberg' circle by radius n_a (analogously, we define B-Neuberg' and C-Neuberg' circles).

We get that $m(BN_aC) = 2\omega$ and $n_a = \frac{a}{2}\sqrt{\operatorname{ctg}^2\omega - 3}$ (see [1]).

The triangle $N_a N_b N_c$ formed by the centers of Neuberg's circles is called Neuberg's triangle.

1st Proposition.

The distances from the center circumscribed to the triangle *ABC* to the vertex of Neuberg's triangle are proportional to the cubes of *ABC* triangle's sides lengths.

Proof.

Let *O* be the center of the circle circumscribed to the triangle *ABC* (see *Figure 2*).

Figure 2.

The law of cosines applied in the triangle ON_aB provides:

 $\frac{ON_a}{\sin(N_aBO)} = \frac{R}{\sin\omega}.$ But $m(\sphericalangle N_aBO) = m(\sphericalangle N_aBC) - m(\sphericalangle OBC) = A - \omega.$ We have that $\frac{ON_a}{\sin(A-\omega)} = \frac{R}{\sin\omega}.$ But $\frac{\sin(A-\omega)}{\sin\omega} = \frac{C\Omega}{A\Omega} = \frac{\frac{a}{c} 2R\sin\omega}{\frac{b}{a} 2R\sin\omega} = \frac{a^3}{abc} = \frac{a^3}{4RS},$

S being the area of the triangle ABC.

Ion Patrascu, Florentin Smarandache

It follows that
$$ON_a = \frac{a^3}{4S}$$
, and we get that $\frac{ON_a}{a^3} = \frac{ON_b}{b^3} = \frac{ON_c}{c^3}$.

Consequence.

In a triangle ABC, we have:

- 1) $ON_a \cdot ON_b \cdot ON_c = R^3;$
- 2) $\operatorname{ctg}\omega = \frac{ON_a}{a} + \frac{ON_b}{b} + \frac{ON_c}{c}.$

2nd Proposition.

If $N_a N_b N_c$ is the Neuberg's triangle of the triangle *ABC*, then:

$$N_a N_b^{\ 2} = \frac{(a^2 + b^2)(a^4 + b^4) - a^2 b^2 c^2}{2a^2 b^2 + 2b^2 c^2 + 2c^2 a^2 - a^4 - b^4 - c^4}.$$

(The formulas for $N_b N_c$ and $N_c N_a$ are obtained from the previous one, by circular permutations.)

Proof.

We apply the law of cosines in the triangle $N_a O N_c$:

$$ON_{a} = \frac{a^{3}}{4S}, ON_{b} = \frac{b^{3}}{4S}, m(\blacktriangleleft N_{a}ON_{b}) = 180^{0} - \hat{c}$$
$$N_{a}N_{b}^{2} = \frac{a^{6} + b^{6} - 2a^{3}b^{3}\cos(180^{0} - c)}{16S^{2}}$$
$$= \frac{a^{6} + b^{6} + 2a^{3}b^{3}\cos C}{16S^{2}}.$$

But the law of cosines in the triangle *ABC* provides

$$2\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

and, from din Heron's formula, we find that $16S^2 = 2a^2b^2 + 2b^2c^2 + 2c^2a^2 - a^4 - b^4 - c^4.$

Substituting the results above, we obtain, after a few calculations, the stated formula.

4th Definition.

Two circles are called orthogonal if they are secant and their tangents in the common points are perpendicular.

3rd Proposition.

(Gaultier – 18B)

Two circles $\mathcal{C}(O_1, r_1)$, $\mathcal{C}(O_2, r_2)$ are orthogonal if and only if

$$r_1^2 + r_2^2 = O_1 O_2^2.$$

Proof.

Let $C(O_1, r_1)$, $C(O_2, r_2)$ be orthogonal (see *Figure* 3); then, if *A* is one of the common points, the triangle O_1AO_2 is a right triangle and the Pythagorean Theorem applied to it, leads to $r_1^2 + r_2^2 = O_1O_2^2$.

Reciprocally.

If the metric relationship from the statement occurs, it means that the triangle O_1AO_2 is a right triangle, therefore A is their common point (the relationship $r_1^2 + r_2^2 = O_1O_2^2$ implies $r_1^2 + r_2^2 > O_1O_2^2$), then $O_1A \perp O_2A$, so O_1A is tangent to the circle $C(O_2, r_2)$ because it is perpendicular in A on radius O_2A , and as well O_2A is tangent to the circle $C(O_1, r_1)$, therefore the circles are orthogonal.

Figure 3.

4th Proposition.

B-Neuberg's and C-Neuberg's circles associated to the right triangle *ABC* (in *A*) are orthogonal.

Proof.

If
$$m(\hat{A}) = 90^{\circ}$$
, then $N_b N_c^2 = \frac{b^6 + c^6}{16S}$.
 $n_b = \frac{b}{2} \sqrt{\operatorname{ctg}^2 \omega - 3}$; $n_c = \frac{c}{2} \sqrt{\operatorname{ctg}^2 \omega - 3}$.
But $\operatorname{ctg} \omega - \frac{a^2 + b^2 + c^2}{4S} = \frac{b^2 + c^2}{2S} = \frac{a^2}{bc}$.

It was taken into account that $a^2 = b^2 + c^2$ and 2S = bc.

$$\begin{aligned} \operatorname{ctg}^{2}\omega - 3 &= \frac{a^{4}}{b^{2}c^{2}} - 3 = \frac{(b^{2} + c^{2})^{2} - 3b^{2}c^{2}}{b^{2}c^{2}} \\ \operatorname{ctg}^{2}\omega - 3 &= \frac{b^{4} + c^{4} - b^{2}c^{2}}{b^{2}c^{2}} \\ n_{b}^{2} + n_{c}^{2} &= \frac{b^{4} + c^{4} - b^{2}c^{2}}{b^{2}c^{2}} \left(\frac{b^{2} + c^{2}}{4}\right) \\ &= \frac{(b^{2} + c^{2})(b^{4} + c^{4} - b^{2}c^{2})}{4b^{2}c^{2}} = \frac{b^{6} + c^{6}}{16S^{2}}.\end{aligned}$$

By $N_b^2 + N_c^2 = N_b N_c^2$, it follows that B-Neuberg's and C-Neuberg's circles are orthogonal.

References.

- [1] F. Smarandache, I. Patrascu: *The Geometry of Homological Triangles*. Columbus: The Educational Publisher, Ohio, USA, 2012.
- [2] T. Lalescu: *Geometria triunghiului* [The Geometry of the Triangle]. Craiova: Editura Apollo, 1993.
- [3] R. A. Johnson: *Advanced Euclidian Geometry*. New York: Dover Publications, 2007.