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ON SOLVING HOMOGENE SYSTEMS 

In the High School Algebra manual for grade IX (1981), pp. 103-104, is presented 
a method for solving systems of two homogenous equations of second degree, with two 
unknowns. In this article we’ll present another method of solving them. 

Let’s have the homogenous system   
a1x

2 + b1xy + c1y
2 = d1

a2 x2 + b2xy + c2y2 = d2

⎧
⎨
⎪

⎩⎪
with real coefficients. 

We will note x = ty , (or y = tx ), and by substitution, the system becomes: 
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Dividing (1) by (2) and grouping the terms, it results an equation of second degree 

of variable t :  
a1d2 − a2d1( )t 2 + b1d2 − b2d1( )t + c1d2 − c2d1( )= 0

 If Δ t < 0 , the system doesn’t have solutions. 
 If Δ t ≥ 0 , the initial system becomes equivalent with the following systems: 

(S1)
x = t1y

a1x
2 + b1xy + c1y

2 = d1

⎧
⎨
⎩

and 

(S2 )
x = t2y

a1x
2 + b1xy + c1y

2 = d1

⎧
⎨
⎩

which can simply be resolved by substituting the value of x  from the first equation into 
the second. 

Further we will provide an extension of this method. 
Let have the homogeneous system: 
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To resolve this, we note  x = ty , it results: 

yn ai, jt
n− i = bj

i=0

n

∑ ,     j = 1,m

By dividing in order the first equation to the rest of them, we obtain: 
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 or: 

ai,1bj − ai, jb1( )t n− i

i=0

n

∑ ,   j = 2,m
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 We will find the real values t1,..., t p  from this system. 
 The initial system is equivalent with the following systems 
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 where h = 1, p . 
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