FLORENTIN SMARANDACHE On Solving Homogene
 Systems

In Florentin Smarandache: "Collected Papers", vol. I (second edition). Ann Arbor (USA): InfoLearnQuest, 2007.

ON SOLVING HOMOGENE SYSTEMS

In the High School Algebra manual for grade IX (1981), pp. 103-104, is presented a method for solving systems of two homogenous equations of second degree, with two unknowns. In this article we'll present another method of solving them.

Let's have the homogenous system

$$
\left\{\begin{array}{l}
a_{1} x^{2}+b_{1} x y+c_{1} y^{2}=d_{1} \\
a_{2} x^{2}+b_{2} x y+c_{2} y^{2}=d_{2}
\end{array}\right.
$$

with real coefficients.
We will note $x=t y$, (or $y=t x$), and by substitution, the system becomes:

$$
\left\{\begin{array}{l}
y^{2}\left(a_{1} t^{2}+b_{1} t+c_{1}\right)=d_{1} \tag{1}\\
y^{2}\left(a_{2} t^{2}+b_{2} t+c_{2}\right)=d_{2}
\end{array}\right.
$$

Dividing (1) by (2) and grouping the terms, it results an equation of second degree of variable t :

$$
\left(a_{1} d_{2}-a_{2} d_{1}\right) t^{2}+\left(b_{1} d_{2}-b_{2} d_{1}\right) t+\left(c_{1} d_{2}-c_{2} d_{1}\right)=0
$$

If $\Delta_{t}<0$, the system doesn't have solutions.
If $\Delta_{t} \geq 0$, the initial system becomes equivalent with the following systems:

$$
\left(S_{1}\right)\left\{\begin{array}{l}
x=t_{1} y \\
a_{1} x^{2}+b_{1} x y+c_{1} y^{2}=d_{1}
\end{array}\right.
$$

and

$$
\left(S_{2}\right)\left\{\begin{array}{l}
x=t_{2} y \\
a_{1} x^{2}+b_{1} x y+c_{1} y^{2}=d_{1}
\end{array}\right.
$$

which can simply be resolved by substituting the value of x from the first equation into the second.

Further we will provide an extension of this method.
Let have the homogeneous system:

$$
\sum_{i=0}^{n} a_{i, j} x^{n-i} y^{i}, \quad j=\overline{1, m}
$$

To resolve this, we note $x=t y$, it results:

$$
y^{n} \sum_{i=0}^{n} a_{i, j} t^{n-i}=b_{j}, \quad j=\overline{1, m}
$$

By dividing in order the first equation to the rest of them, we obtain:

$$
\left(\sum_{i=0}^{n} a_{i, 1} t^{n-i}\right) /\left(\sum_{i=0}^{n} a_{i, j} j^{n-i}\right)=b_{1} / b_{j}, j=\overline{2, m}
$$

or:

$$
\sum_{i=0}^{n}\left(a_{i, 1} b_{j}-a_{i, j} b_{1}\right) t^{n-i}, j=\overline{2, m}
$$

We will find the real values t_{1}, \ldots, t_{p} from this system.
The initial system is equivalent with the following systems

$$
\left(S_{h}\right)\left\{\begin{array}{l}
x=t_{h} y \\
\sum_{i=0}^{n} a_{i, 1} x^{n-1} y^{i}=b_{1}
\end{array} \text { where } h=\overline{1, p} .\right.
$$

