FLORENTIN SMARANDACHE
 On An Erdös' Open
 Problems

In Florentin Smarandache: "Collected Papers", vol. I (second edition). Ann Arbor (USA): InfoLearnQuest, 2007.

ON AN ERDÖS' OPEN PROBLEMS

In one of his books ("Analysis...") Mr. Paul Erdös proposed the following problem:
"The integer n is called a barrier for an arithmetic function f if $m+f(m) \leq n$ for all $m<n$.

Question: Are there infinitely many barriers for $\varepsilon v(n)$, for some $\varepsilon>0$? Here $v(n)$ denotes the number of distinct prime factors of n."

We found some results regarding this question, which results make us to conjecture that there is a finite number of barriers, for all $\varepsilon>0$.

Let $R(n)$ be the relation: $m+\varepsilon v(m) \leq n, \quad \forall m<n$.

Lemma 1. If $\varepsilon>1$ there are two barriers only: $n=1$ and $n=2$ (which we call trivial barriers).

Proof. It is clear for $n=1$ and , $n=2$ because $v(0)=v(1)=0$.
Let's consider $n \geq 3$. Then, if $m=n-1$ we have $m+\varepsilon v(m) \geq n-1+\varepsilon>n$, contradiction.

Lemma 2. There is an infinity of numbers which cannot be barriers for $\varepsilon v(n)$, $\forall \varepsilon>0$.

Proof. Let's consider $s, k \in \mathbb{N}^{*}$ such that $s \cdot \varepsilon>k$. We write n in the form $n=p_{i_{1}}^{\alpha_{i_{1}}} \cdots p_{i_{s}}^{\alpha_{i_{s}}}+k$, where for all $j, \alpha_{i_{j}} \in \mathbb{N}^{*}$ and $p_{i_{j}}$ are positive distinct primes.

Taking $m=n-k$ we have $m+\varepsilon v(m)=n-k+\varepsilon \cdot s>n$.
But there exists an infinity of n 's because the parameters $\alpha_{i_{1}}, \ldots, \alpha_{i_{s}}$ are arbitrary in \mathbb{N}^{*} and $p_{i_{1}}, \ldots, p_{i_{s}}$ are arbitrary positive distinct primes, also there is an infinity of couples (s, k) for an $\varepsilon>0$, fixed, with the property $s \cdot \varepsilon>k$.

Lemma 3. For all $\varepsilon \in(0,1]$ there are nontrivial barriers for $\varepsilon v(n)$.
Proof. Let t be the greatest natural number such that $t \varepsilon \leq 1$ (always there is such t).

Let n be from $\left[3, \ldots, p_{1} \cdots p_{t} p_{t+1}\right)$, where $\left\{p_{i}\right\}$ is the sequence of the positive primes. Then $1 \leq v(n) \leq t$.

All $n \in\left[1, \ldots, p_{1} \cdots p_{t} p_{t+1}\right]$ is a barrier, because: $\forall 1 \leq k \leq n-1$, if $m=n-k$ we have $m+\varepsilon v(m) \leq n-k+\varepsilon \cdot t \leq n$.

Hence, there are at list $p_{1} \cdots p_{t} p_{t+1}$ barriers.
Corollary. If $\varepsilon \rightarrow 0$ then n (the number of barriers) $\rightarrow \infty$.

Lemma 4. Let's consider $n \in\left[1, \ldots, p_{1} \cdots p_{r} p_{r+1}\right]$ and $\varepsilon \in(0,1]$. Then: n is a barrier if and only if $R(n)$ is verified for $m \in\{n-1, n-2, \ldots, n-r+1\}$.

Proof. It is sufficient to prove that $R(n)$ is always verified for $m \leq n-r$.
Let's consider $m=n-r-u, u \geq 0$. Then $m+\varepsilon v(m) \leq n-r-u+\varepsilon \cdot r \leq n$.

Conjecture.

We note $I_{r} \in\left[p_{1} \cdots p_{r}, \ldots, \cdot p_{1} \cdots p_{r} p_{r+1}\right)$. Of course $\bigcup_{r \geq 1} I_{r}=\mathbb{N} \backslash\{0,1\}$, and $I_{r_{1}} \cap I_{r_{2}}=\Phi$ for $r_{1} \neq r_{2}$.

Let $\mathcal{N}_{r}(1+t)$ be the number of all numbers n from I_{r} such that $1 \leq v(n) \leq t$.
We conjecture that there is a finite number of barriers for $\varepsilon v(n), \forall \varepsilon>0$; because

$$
\lim _{r \rightarrow \infty} \frac{\mathcal{N}_{r}(1+t)}{p_{1} \cdots p_{r+1}-p_{1} \cdots p_{r}}=0
$$

and the probability (of finding of $r-1$ consecutive values for m, which verify the relation $R(n)$) approaches zero.

