FLORENTIN SMARANDACHE On An Erdös' Open Problems

In Florentin Smarandache: "Collected Papers", vol. I (second edition). Ann Arbor (USA): InfoLearnQuest, 2007.

ON AN ERDÖS' OPEN PROBLEMS

In one of his books ("Analysis...") Mr. Paul Erdös proposed the following problem:

"The integer *n* is called a barrier for an arithmetic function *f* if $m + f(m) \le n$ for all m < n.

Question: Are there infinitely many barriers for $\varepsilon v(n)$, for some $\varepsilon > 0$? Here v(n) denotes the number of distinct prime factors of *n*."

We found some results regarding this question, which results make us to conjecture that there is a finite number of barriers, for all $\varepsilon > 0$.

Let R(n) be the relation: $m + \varepsilon v(m) \le n$, $\forall m < n$.

Lemma 1. If $\varepsilon > 1$ there are two barriers only: n = 1 and n = 2 (which we call trivial barriers).

Proof. It is clear for n = 1 and n = 2 because v(0) = v(1) = 0.

Let's consider $n \ge 3$. Then, if m = n - 1 we have $m + \varepsilon v(m) \ge n - 1 + \varepsilon > n$, contradiction.

Lemma 2. There is an infinity of numbers which cannot be barriers for $\varepsilon v(n)$, $\forall \varepsilon > 0$.

Proof. Let's consider $s, k \in \mathbb{N}^*$ such that $s \cdot \varepsilon > k$. We write *n* in the form $n = p_{i_1}^{\alpha_{i_1}} \cdots p_{i_s}^{\alpha_{i_s}} + k$, where for all *j*, $\alpha_{i_i} \in \mathbb{N}^*$ and p_{i_i} are positive distinct primes.

Taking m = n - k we have $m + \varepsilon v(m) = n - k + \varepsilon \cdot s > n$.

But there exists an infinity of *n*'s because the parameters $\alpha_{i_1}, ..., \alpha_{i_s}$ are arbitrary in \mathbb{N}^* and $p_{i_1}, ..., p_{i_s}$ are arbitrary positive distinct primes, also there is an infinity of couples (s, k) for an $\varepsilon > 0$, fixed, with the property $s \cdot \varepsilon > k$.

Lemma 3. For all $\varepsilon \in (0,1]$ there are nontrivial barriers for $\varepsilon v(n)$.

Proof. Let t be the greatest natural number such that $t \in \leq 1$ (always there is such t).

Let *n* be from $[3, ..., p_1 \cdots p_t p_{t+1})$, where $\{p_i\}$ is the sequence of the positive primes. Then $1 \le v(n) \le t$.

All $n \in [1, ..., p_1 \cdots p_t p_{t+1}]$ is a barrier, because: $\forall 1 \le k \le n-1$, if m = n-k we have $m + \varepsilon v(m) \le n-k + \varepsilon \cdot t \le n$.

Hence, there are at list $p_1 \cdots p_t p_{t+1}$ barriers.

Corollary. If $\varepsilon \to 0$ then *n* (the number of barriers) $\to \infty$.

Lemma 4. Let's consider $n \in [1, ..., p_1 \cdots p_r p_{r+1}]$ and $\varepsilon \in (0,1]$. Then: *n* is a barrier if and only if R(n) is verified for $m \in \{n-1, n-2, ..., n-r+1\}$.

Proof. It is sufficient to prove that R(n) is always verified for $m \le n - r$. Let's consider m = n - r - u, $u \ge 0$. Then $m + \varepsilon v(m) \le n - r - u + \varepsilon \cdot r \le n$.

Conjecture.

We note $I_r \in [p_1 \cdots p_r, \dots, p_1 \cdots p_r p_{r+1})$. Of course $\bigcup_{r \ge 1} I_r = \mathbb{N} \setminus \{0, 1\}$, and

 $I_{r_1} \cap I_{r_2} = \Phi$ for $r_1 \neq r_2$.

Let $\mathcal{N}_r(1+t)$ be the number of all numbers *n* from I_r such that $1 \le v(n) \le t$. We conjecture that there is a finite number of barriers for $\varepsilon v(n)$, $\forall \varepsilon > 0$; because

$$\lim_{r \to \infty} \frac{\mathcal{N}_r(1+t)}{p_1 \cdots p_{r+1} - p_1 \cdots p_r} = 0$$

and the probability (of finding of r-1 consecutive values for m, which verify the relation R(n)) approaches zero.