
ON CRITTENDEN AND VANDEN EYNDEN'S CONJECTURE
FLORENTIN SMARANDACHE 

It is possible to cover all (positive) integers with n  geometrical progressions of integers? 

Find a necessary and sufficient condition for a general class of positive integer sequences 
such that, for a fixed n , there are n  (distinct) sequences of this class which cover all integers. 

 Comments: 
a) No. Let 1,..., na a  be respectively the first terms of each geometrical progression, and 

1,..., nq q  respectively their ratios. Let p be a prime number different from

1,..., na a , 1,..., nq q . Then p  does not belong to the union of these n  geometrical 
progressions.

b) For example, the class of progressions
{ } ( ){ }1 1 21

: ,...,  for 1,  and , , ,.. *f n n n n in
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= = ≥ + ∈  with the property 

( ) ( )1 1*,  ,..., * : ,...,i i
iy N x x N f x x y∃ ∈ ∀ ∈ ≠ . Does it cover all integers?

But, if ( ) ( )1 1*,  ,..., * : ,...,i i
iy N x x N f x x y∀ ∈ ∃ ∈ = ?

 (Generally no.) 

This (solved and unsolved) problem remembers Crittenden and Vanden Eynden’s 
conjecture. 
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