FLORENTIN SMARANDACHE
On A Diophantine
Equation $x^{2}=2 y^{4}-1$

In Florentin Smarandache: "Collected Papers", vol. I (second edition). Ann Arbor (USA): InfoLearnQuest, 2007.
[Published in "Gamma, Anul IX, November 1986, No.1, p. 12]

ON DIOPHANTINE EQUATION $X^{2}=2 Y^{4}-1$
Abstract: In this note we present a method of solving this Diophantine equation, method which is different from Ljunggren's, Mordell's, and R.K.Guy's.

In his book of unsolved problems Guy shows that the equation $x^{2}=2 y^{4}-1$ has, in the set of positive integers, the only solutions $(1,1)$ and $(239,13)$; (Ljunggren has proved it in a complicated way). But Mordell gave an easier proof.

We'll note $t=y^{2}$. The general integer solution for $x^{2}-2 t^{2}+1=0$ is

$$
\left\{\begin{array}{l}
x_{n+1}=3 x_{n}+4 t_{n} \\
t_{n+1}=2 x_{n}+3 t_{n}
\end{array}\right.
$$

for all $n \in \mathbb{N}$, where $\left(x_{0}, y_{0}\right)=(1, \varepsilon)$, with $\varepsilon= \pm 1$ (see [6]) or

$$
\binom{x_{n}}{t_{n}}=\left(\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right)^{n} \cdot\binom{1}{\varepsilon} \text {, for all } n \in \mathbb{N} \text {, where a matrix to the power zero is }
$$

equal to the unit matrix I.
Let's consider $A=\left(\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right)$, and $\lambda \in \mathbb{R}$. Then $\operatorname{det}(A-\lambda \cdot I)=0$ implies $\lambda_{1,2}=3 \pm \sqrt{2}$, whence if v is a vector of dimension two, then: $A v=\lambda_{1,2} \cdot v$.

Let's consider $P=\left(\begin{array}{cc}2 & 2 \\ \sqrt{2} & -\sqrt{2}\end{array}\right)$ and $D=\left(\begin{array}{cc}3+2 \sqrt{2} & 0 \\ 0 & 3-2 \sqrt{2}\end{array}\right)$. We have $P^{-1} \cdot A \cdot P=D$, or
$A^{n}=P \cdot D^{n} \cdot P^{-1}=\left(\begin{array}{cc}\frac{1}{2}(a+b) & \frac{\sqrt{2}}{2}(a-b) \\ \frac{\sqrt{2}}{4}(a-b) & \frac{1}{2}(a+b)\end{array}\right)$,
where $a=(3+2 \sqrt{2})^{n}$ and $b=(3-2 \sqrt{2})^{n}$.
Hence, we find:
$\binom{x_{n}}{t_{n}}=\binom{\frac{1+\varepsilon \sqrt{2}}{2}(3+2 \sqrt{2})^{n}+\frac{1-\varepsilon \sqrt{2}}{2}(3-2 \sqrt{2})^{n}}{\frac{2 \varepsilon+\sqrt{2}}{4}(3+2 \sqrt{2})^{n}+\frac{2 \varepsilon-\sqrt{2}}{4}(3-2 \sqrt{2})^{n}}, n \in \mathbb{N}$.
Or $y_{n}^{2}=\frac{2 \varepsilon+\sqrt{2}}{4}(3+2 \sqrt{2})^{n}+\frac{2 \varepsilon-\sqrt{2}}{4}(3-2 \sqrt{2})^{n}, \quad n \in \mathbb{N}$.
For $n=0, \varepsilon=1$ we obtain $y_{0}^{2}=1$ (whence $x_{0}^{2}=1$), and for $n=3, \varepsilon=1$ we obtain $y_{3}^{2}=169$ (whence $x_{3}=239$).

$$
\begin{equation*}
y_{n}^{2}=\varepsilon \sum_{k=0}^{\left[\frac{n}{2}\right]}\binom{n}{2 k} \cdot 3^{n-2 k} 2^{3 k}+\sum_{k=0}^{\left[\frac{n-1}{2}\right]}\binom{n}{2 k+1} \cdot 3^{n-2 k-1} 2^{3 k+1} \tag{1}
\end{equation*}
$$

We still must prove that y_{n}^{2} is a perfect square if and only if $n=0,3$.
We can use a similar method for the Diophantine equation $x^{2}=D y^{4} \pm 1$, or more generally: $C \cdot X^{2 a}=D Y^{2 b}+E$, with $a, b \in \mathbb{N}^{*}$ and $C, D, E \in \mathbb{Z}^{*}$; denoting $X^{a}=U$, $Y^{b}=V$, and applying the results from F.S. [6], the relation (1) becomes very complicated.

REFERENCES

[1] J. H. E. Cohn - The Diophantine equation $y^{2}=D x^{4}+1$ - Math. Scand. 42 (1978), pp. 180-188, MR 80a: 10031.
[2] R. K. Guy - Unsolved Problems in Number Theory - Springer-Verlag, 1981, Problem D6, 84-85.
[3] W. Ljunggren - Zur Theorie der Gleichung $x^{2}+1=D y^{4}-$ Avh. Norske Vid. Akad., Oslo, I, 5(1942), \#pp. 5-27; MR 8, 6.
[4] W. Ljunggren - Some remarks on the Diophantine equation $x^{2}-D y^{4}=1$ and $x^{4}-D y^{2}=1$ - J. London Math. Soc. 41(1966), 542-544, MR 33 \#5555.
[5] L. J. Mordell, The Diophantine equation $y^{2}=D x^{4}+1$, J. London Math. Soc. 39(1964, 161-164, MR 29\#65.
[6] F. Smarandache - A Method to solve Diophantine Equations of two unknowns and second degree - "Gazeta Matematică", $2{ }^{\text {nd }}$ Series, Volume 1, No. 2, 1988, pp. 151-7; translated into Spanish by Francisco Bellot Rosado.
http://xxx.lanl.gov/pdf/math.GM/0609671.

