FLORENTIN SMARANDACHE
 On Solving General Linear Equations in The Set of Natural Numbers

ON SOLVING GENERAL LINEAR EQUATIONS IN THE SET OF NATURAL NUMBERS

The utility of this article is that it establishes if the number of the natural solutions of a general linear equation is limited or not. We will show also a method of solving, using integer numbers, the equation $a x-b y=c$ (which represents a generalization of lemmas 1 and 2 of [4]), an example of solving a linear equation with 3 unknowns in N , and some considerations on solving, using natural numbers, equations with n unknowns.

Let's consider the equation:
(1) $\quad \sum_{i=1}^{n} a_{i} x_{i}=b \quad$ with all $a_{i}, b \in \mathbb{Z}, \quad a_{i} \neq 0$, and the greatest common factor $\left(a_{1}, \ldots, a_{n}\right)=\mathrm{d}$.

Lemma 1: The equation (1) admits at least a solution in the set of integers, if d divides b.

This result is classic.
In (1), one does not diminish the generality by considering $\left(a_{1}, \ldots, a_{n}\right)=1$, because in the case when $d \neq 1$, one divides the equation by this number; if the division is not an integer, then the equation does not admit natural solutions.

It is obvious that each homogeneous linear equation admits solutions in \mathbb{N} : at least the banal solution!

PROPERTIES ON THE NUMBER OF NATURAL SOLUTIONS OF A GENERAL LINEAR EQUATION

We will introduce the following definition:
Definition 1: The equation (1) has variations of sign if there are at least two coefficients a_{i}, a_{j} with $1 \leq i, j \leq n$, such that $\operatorname{sign}\left(a_{i} \cdot a_{j}\right)=-1$

Lemma 2: An equation (1) which has sign variations admits an infinity of natural solutions (generalization of lemma 1 of [4]).

Proof: From the hypothesis of the lemma it results that the equation has h no null positive terms, $1 \leq h \leq n$, and $k=n-h$ non null negative terms. We have $1 \leq k \leq n$; it is supposed that the first h terms are positive and the following k terms are negative (if not, we rearrange the terms).

We can then write:

$$
\sum_{t=1}^{h} a_{t} x_{t}-\sum_{j=h+1}^{n} a_{j}^{\prime} x_{j}=b \text { where } a_{j}^{\prime}=-a_{j}>0
$$

Let's consider $0<M=\left[a_{1}, \ldots, a_{n}\right]$ the least common multiple, and $c_{i}=\left|M / a_{i}\right|$, $i \in\{1,2, \ldots, n\}$.

Let's also consider $0<P=[h, k]$ the least common multiple, and $h_{1}=P / h$ and $k_{1}=P / k$.

Taking $\left\{\begin{array}{lr}x_{t}=h_{1} c_{t} \cdot z+x_{t}^{0}, & 1 \leq t \leq h \\ x_{j}=k_{1} c_{j} \cdot z+x_{j}^{0}, & h+1 \leq j \leq n\end{array}\right.$
where $z \in \mathbb{N}, z \geq \max \left\{\left[\frac{-x_{t}^{0}}{h_{1} c_{t}}\right],\left[\frac{x_{j}^{0}}{k_{1} c_{j}}\right]\right\}+1$ with $[\gamma]$ meaning integer part of γ, i.e. the greatest integer less than or equal to γ, and $x_{i}^{0}, i \in\{1,2, \ldots, n\}$, a particular integer solution (which exists according to lemma 1), we obtain an infinity of solutions in the set of natural numbers for the equation (1).

Lemma 3:
a) An equation (1) which does not have variations of sign has at maximum a limited number of natural solutions.
b) In this case, for $b \neq 0$, constant, the equation has the maximum number of solutions if and only if all $a_{i}=1$ for $i \in\{1,2, \ldots, n\}$.
Proof: (see also [6]).
a) One considers all $a_{i}>0$ (otherwise, multiply the equation by -1).

If $b<0$, it is obvious that the equation does not have any solution (in \mathbb{N}).
If $b=0$, the equation admits only the trivial solution.
If $b>0$, then each unknown x_{i} takes positive integer values between 0 and $b / a_{i}=d_{i}$ (finite), and not necessarily all these values. Thus the maximum number of solutions is lower or equal to: $\prod_{i=1}^{n}\left(1+d_{i}\right)$, which is finite.
b) For $b \neq 0$, constant, $\prod_{i=1}^{n}\left(1+d_{i}\right)$ is maximum if and only if d_{i} are
maximum, i.e. iff $a_{i}=1$ for all i, where $i=\{1,2, \ldots, n\}$.
Theorem 1. The equation (1) admits an infinity of natural solutions if and only if it has variations of sign.

This naturally follows from the previous results.

Method of solving.

Theorem 2. Let's consider the equation with integer coefficients $a x-b y=c$, where a and $b>0$ and $(a, b)=1$. Then the general solution in natural numbers of this equation is:
$\left\{\begin{array}{l}x=b k+x_{0} \\ y=a k+y_{0}\end{array}\right.$ where $\left(x_{0}, y_{0}\right)$ is a particular integer solution of the equation,
and $k \geq \max \left\{\left[-x_{0} / b\right],\left[-y_{0} / a\right]\right\}$ is an integer parameter (generalization of lemma 2 of [4]).

Proof: It results from [1] that the general integer solution of the equation is $\left\{\begin{array}{l}x=b k+x_{0} \\ y=a k+y_{0}\end{array}\right.$ where $\left(x_{0}, y_{0}\right)$ is a particular integer solution of the equation and
$k \in \mathbb{Z}$. Since x and y are natural integers, it is necessary for us to impose conditions for k such that $\mathrm{x} \geq 0$ and $\mathrm{y} \geq 0$, from which it results the theorem.

WE CONCLUDE!
To solve in the set of natural numbers a linear equation with n unknowns we will use the previous results in the following way:
a) If the equation does not have variations of sign, because it has a limited number of natural solutions, the solving is made by tests (see also [6])
b) If it has variations of sign and if b is divisible by d, then it admits an infinity of natural solutions. One finds its general integer solution (see [2], [5]);
$x_{i}=\sum_{j=1}^{n-1} \alpha_{i j} k_{j}+\beta_{i}, 1 \leq i \leq n$ where all the $\alpha_{i j}, \beta_{i} \in \mathbb{Z}$ and the k_{j} are integer parameters.

By applying the restriction $x_{i} \geq 0$ for i from $\{1,2, \ldots, n\}$, one finds the conditions which must be satisfied by the integer parameters k_{j} for all j of $\{1,2, \ldots, n-1\}$. (c)

The case $n=2$ and $n=3$ can be done by this method, but when n is bigger, the condition (c) become more and more difficult to find.

Example: Solve in \mathbb{N} the equation $3 x-7 y+2 z=-18$.
Solution: In \mathbb{Z} one obtains the general integer solution:

$$
\left\{\begin{array}{l}
x=k_{1} \\
y=k_{1}+2 k_{2} \\
z=2 k_{1}+7 k_{2}-9
\end{array} \quad \text { with } k_{1} \text { and } k_{2} \text { in } \mathbb{Z}\right.
$$

From the conditions (c) result the inequalities $x \geq 0, y \geq 0, z \geq 0$. It results that $k_{1} \geq 0$ and also:
$k_{2} \geq\left[-k_{1} / 2\right]+1$ if $-\mathrm{k}_{1} / 2 \notin \mathrm{Z}$, or $\mathrm{k}_{2} \geq-\mathrm{k}_{1} / 2$ if $-\mathrm{k}_{1} / 2 \in \mathrm{Z}$;
and $k_{2} \geq\left[\left(9-2 k_{1}\right) / 7\right]+1$ if $\left(9-2 \mathrm{k}_{1}\right) / 7 \oplus \mathrm{Z}$, or $\mathrm{k}_{2} \geq\left(9-2 \mathrm{k}_{1}\right) / 7$ if $\left(9-2 \mathrm{k}_{1}\right) / 7 \in \mathrm{Z}$;
that is $k_{2} \geq\left[\left(2-2 k_{1}\right) / 7\right]+2$ if $\left(2-2 \mathrm{k}_{1}\right) / 7 \oplus \mathrm{Z}$, or $\mathrm{k}_{2} \geq\left(2-2 \mathrm{k}_{1}\right) / 7+1$ if $\left(2-2 \mathrm{k}_{1}\right) / 7$ \in Z.

With these conditions on k_{1} and k_{2} we have the general solution in natural numbers of the equation.

REFERENCES

[1] Creangă I, Cazacu C., Mihuț P., Opaiț Gh., Reisher, Corina - "Introducere în teoria numerelor" - Editura Didactică şi Pedagogică, Bucharest, 1965.
[2] Ion D. Ion, Niță C. - "Elemente de aritmetică cu aplicații în tehnici de calcul" - Editura Tehnică, Bucharest, 1978.
[3] Popovici C. P. - "Logica şi teoria numerelor" - Editura Didactică şi Pedagogică, Bucharest, 1970.
[4] Andrica Dorin, Andreescu Titu - "Existența unei soluții de bază pentru ecuația $a x^{2}-b y^{2}=1 "$ - Gazeta Matematică, Nr. 2/1981.
[5] Smarandache, Florentin Gh. - "Un algorithme de résolution dans l'ensemble des nombres entiers des équations linéaires", 1981;
a more general English version of this French article is: "Integer Algorithms to Solver Linear Equations and Systems" in arXiv at http://xxx.lanl.gov/pdf/math/0010134 ;
[6] Smarandache, Florentin Gh. - Problema E: 6919, Gazeta Matematică, Nr. 7/1980.

