FLORENTIN SMARANDACHE P-Q Relationships and Sequences

In Florentin Smarandache: "Collected Papers", vol. II. Chisinau (Moldova): Universitatea de Stat din Moldova, 1997.

P-Q Relationships and Sequences

Let $A=\left\{a_{r_{1}}\right\}, n \geq 1$ be a sequence of numbers and $q ; p$ integers ≥ 1.
We say that the terms $a_{k+1}, a_{k+2}, \ldots, a_{k+p}, a_{k+p+1}, a_{k+p+2}, \ldots, a_{k+p+q}$ satisfy a $p-q$ relationship if

$$
a_{k+1} \diamond a_{k+2} \diamond \ldots \diamond a_{k+p}=a_{k+p+1} \diamond a_{k+p+2} \diamond \ldots \diamond a_{k+p+q}
$$

where \diamond may be any arithmetic operation, although it is generally a binary relation on A. If this relationship is satisfied for any $k \geq 1$, then $\left\{a_{n}\right\}, n \geq 1$ is said to be a $p-q-\diamond$ sequence. For operations such as addition, where $\diamond=+$, the sequence is called a $p-q$-additive sequence.

As a specific case, we can easily see that the Fibonacci/Lucas sequence ($a_{n}+a_{n+1}=a_{n+2}$, for $n \geq 1$), is a $3-1$-additive sequence.

Definition. Given any integer $n \geq 1$, the value of the Smarandache function $S(n)$ is the smallest integer m such that n divides m !.

If we consider the sequence of numbers that are the values of the Smarandache function for the integers $n \geq 1$,
$1,2,3,4,5,3,7,4,6,5,11,4,13,7,5,6,17, \ldots$
they can be incorporated into questions involving the $p-q-\diamond$ relationships.
a) How many ordered quadruples are there of the form ($S(n), S(n+1), S(n+2), S(n+3)$) such that $S(n+1)+S(n+2)=S(n+3)+S(n+4)$ which is a $2-2$-additive relationship?

The three quadruples
$S(6)+S(7)=S(8)+S(9), \quad 3+7=4+6 ;$
$S(7)+S(8)=S(9)+S(10), \quad 7+4=6+5 ;$
$S(28)+S(29)=S(30)+S(31), \quad 7+29=5+31$.
are known. Are there any others? At this time, these are the only known solutions.
b) How many quadruples satisfy the $2-2$-subtrac relationship $S(n+1)-S(n+2)=$ $S(n+3)-S(n+4)$?

The three quadruples
$S(1)-S(2)=S(3)-S(4), \quad 1-2=3-4$;
$S(2)-S(3)=S(4)-S(5), 2-3=4-5$;
$S(49)-S(50)=S(51)-S(52), \quad 14-10=17-13$
are known. Are there any others?
c) How many 6-tuples satisfy the 2-3-additive relationship $S(n+1)+S(n+2)+S(n+3)=$ $S(n+4)+S(n+5)+S(n+6) ?$

The only known solution is

$$
S(5)+S(6)+S(7)=S(8)+S(9)+S(10), 5+3+7=4+6+5
$$

Charles Ashbacher has a computer program that caiculates the values of the Smarandache function. Therefore, he may be able to find additional solutions to theese problems.

More general, if f_{p} is a p-ary raltion and g_{q} a q-ary relation, both defined on the set $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$, then $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{p}}, a_{j_{1}}, a_{j_{2}}, \ldots, a_{j_{q}}$ satisfies a $f_{p}-g_{q}$ relationship if

$$
f\left(a_{i_{1}}, a_{z_{2}}, \ldots, a_{i_{p}}\right)=g\left(a_{j_{1}}, a_{j_{2}}, \ldots, a_{j_{q}}\right)
$$

If this relationship holds for all terms of the sequence, then $\left\{a_{n}\right\}, n \geq 1$ is called a $f_{p}-g_{q}$ sequence.

Study some $f_{p}-g_{p}$ relationship for well-known sequences, such as the perfect numbers, Ulam numbers, abundant numbers, Catalan numbers and Cullen numbers. For example, a $2-2$-additive, subtractive or multiplicative relationship.

