FLORENTIN SMARANDACHE P-Q Relationships and Sequences

In Florentin Smarandache: "Collected Papers", vol. II. Chisinau (Moldova): Universitatea de Stat din Moldova, 1997.

P-Q Relationships and Sequences

Let $A = \{a_n\}, n \ge 1$ be a sequence of numbers and q, p integers ≥ 1 .

We say that the terms $a_{k+1}, a_{k+2}, \ldots, a_{k+p}, a_{k+p+1}, a_{k+p+2}, \ldots, a_{k+p+q}$ satisfy a p-q relationship if

$$a_{k+1} \diamond a_{k+2} \diamond \dots \diamond a_{k+p} = a_{k+p+1} \diamond a_{k+p+2} \diamond \dots \diamond a_{k+p+q}$$

where \diamond may be any arithmetic operation, although it is generally a binary relation on A. If this relationship is satisfied for any $k \ge 1$, then $\{a_n\}, n \ge 1$ is said to be a $p - q - \diamond$ sequence. For operations such as addition, where $\diamond = +$, the sequence is called a p - q-additive sequence.

As a specific case, we can easily see that the Fibonacci/Lucas sequence $(a_n + a_{n+1} = a_{n+2},$ for $n \ge 1$), is a 3-1-additive sequence.

Definition. Given any integer $n \ge 1$, the value of the Smarandache function S(n) is the smallest integer m such that n divides m!.

If we consider the sequence of numbers that are the values of the Smarandache function for the integers $n \ge 1$,

 $1, 2, 3, 4, 5, 3, 7, 4, 6, 5, 11, 4, 13, 7, 5, 6, 17, \ldots$

they can be incorporated into questions involving the $p - q - \diamondsuit$ relationships.

184

a) How many ordered quadruples are there of the form (S(n), S(n+1), S(n+2), S(n+3))such that S(n+1) + S(n+2) = S(n+3) + S(n+4) which is a 2-2-additive relationship?

The three quadruples

$$S(6) + S(7) = S(8) + S(9), 3 + 7 = 4 + 6;$$

$$S(7) + S(8) = S(9) + S(10), 7 + 4 = 6 + 5;$$

$$S(28) + S(29) = S(30) + S(31), 7 + 29 = 5 + 31.$$

are known. Are there any others? At this time, these are the only known solutions.

b) How many quadruples satisfy the 2 - 2-subtrac relationship S(n + 1) - S(n + 2) = S(n + 3) - S(n + 4)?

The three quadruples

$$\begin{split} S(1) - S(2) &= S(3) - S(4), \quad 1 - 2 = 3 - 4; \\ S(2) - S(3) &= S(4) - S(5), \quad 2 - 3 = 4 - 5; \\ S(49) - S(50) &= S(51) - S(52), \quad 14 - 10 = 17 - 13 \end{split}$$

are known. Are there any others?

c) How many 6-tuples satisfy the 2–3-additive relationship S(n+1) + S(n+2) + S(n+3) = S(n+4) + S(n+5) + S(n+6)?

The only known solution is

$$S(5) + S(6) + S(7) = S(8) + S(9) + S(10), 5 + 3 + 7 = 4 + 6 + 5$$

Charles Ashbacher has a computer program that calculates the values of the Smarandache function. Therefore, he may be able to find additional solutions to theese problems.

More general, if f_p is a p-ary raltion and g_q a q-ary relation, both defined on the set $\{a_1, a_2, a_3, \ldots\}$, then $a_{i_1}, a_{i_2}, \ldots, a_{i_p}, a_{j_1}, a_{j_2}, \ldots, a_{j_q}$ satisfies a $f_p - g_q$ relationship if

$$f(a_{i_1}, a_{i_2}, \ldots, a_{i_p}) = g(a_{j_1}, a_{j_2}, \ldots, a_{j_q}).$$

If this relationship holds for all terms of the sequence, then $\{a_n\}, n \ge 1$ is called a $f_p - g_q$ sequence.

Study some $f_p - g_p$ relationship for welll-known sequences, such as the perfect numbers, Ulam numbers, abundant numbers, Catalan numbers and Cullen numbers. For example, a 2-2-additive, subtractive or multiplicative relationship.