FLORENTIN SMARANDACHE Prime Conjecture

In Florentin Smarandache: "Collected Papers", vol. II. Chisinau (Moldova): Universitatea de Stat din Moldova, 1997.

Prime Conjecture

Any odd number can be expressed as a sum of two primes minus a third prime, not including the triviai solution $p=p+q-q$.

For example,
$1=3+5-7=5+7-11=7+11-17=11+13-23=\ldots$
$3=5+11-13=7+19-23=17+23-37=\ldots$
$5=3+13-11=\ldots$
$7=11+13-17=\ldots$
$9=5+7-3=\ldots$
$11=7+17-13=\ldots$
a) Is this conjecture equivalent to Coldbach's conjecture? The conjecture is that any odd prime ≥ 9 can be expressed as a sum of three primes. This was solved by Vinogradov in 1937 for any odd number greater then $3^{3: 5}$.
b) The number of times each odd number can be expressed as a sum of two primes minus a third prime are called prime conjecture numbers. None of them is known!
c) Write a computer program to check this conjecture for as many positive numbers as possible.

There are infiniteiy many numbers that cannot be expressed as the absolute difference between a cube and a square. These are called bad numbers(!)

For example, F.Smarandache has conjuctured [1] that $5,6,7,10,13$ and 14 are bad numbers. However, 1, 2, 3, 4, 8, 9, 11, 12, and 15 are not as

$$
\begin{aligned}
1= & \left|2^{3}-3^{2}\right|, 2=\left|3^{3}-5^{2}\right|, 3=\left|1^{3}-2^{2}\right|, 4=\left|5^{3}-11^{2}\right|, 8=\left|1^{3}-3^{2}\right|, \\
& 9=\left|6^{3}-15^{2}\right|, 11=\left|3^{3}-4^{2}\right|, 12=\left|13^{3}-47^{2}\right|, 15=\left|4^{3}-7^{2}\right| .
\end{aligned}
$$

a) Write a computer program to determine as many bad numbers as possible. Find an ordered array of a 's such that $a=\left|x^{3}-y^{2}\right|$, for x and y integers ≥ 1.

References

[1] F.Smarandache, "Properties of the Numbers", Unjversity of Craiova Archives, 1975. [See also the Arizona State Special Collections, Tempe, AZ., USA].

