From a problem of geometrical construction to the Carnot circles
 Prof. Ion Pătraşcu - The Fraţii Buzeşti College, Craiova - Romania
 Prof. Dr. Florentin Smarandache - University of New Mexico - U.S.A.

In this article we'll give solution to a problem of geometrical construction and we'll show the connection between this problem and the theorem relative to Carnot's circles.

Let $A B C$ a given random triangle. Using only a compass and a measuring line, construct a point M in the interior of this triangle such that the circumscribed circles to the triangles $M A B$ and $M A C$ are congruent.

Construction

We'll start by assuming, as in many situations when we have geometrical constructions, that the construction problem is resolved.

Let M a point in the interior of the triangle $A B C$ such that the circumscribed circles to the triangles $M A B$ and $M A C$ are congruent.

We'll note O_{C} and O_{B} the centers of these triangles, these are the intersections between the mediator of the segments $A B$ and $A C$. The quadrilateral $A O_{C} M O_{B}$ is a rhomb (therefore M is the symmetrical of the point A in rapport to $O_{B} O_{C}$ (see Fig. 1).

A. Step by step construction

We'll construct the mediators of the segments $A B$ and $A C$, let R, S their intersection points with $A B$ respectively $A C$. (We suppose that $A B<A C$, therefore $A R<A S$.). With the compass in A and with the radius larger than $A S$ we construct a circle which intersects $O R$ in O_{C} and $O_{C^{\prime}}$ respectively $O S$ in O_{B} and $O_{B^{\prime}}-O$ being the circumscribed circle to the triangle $A B C$.

Now we construct the symmetric of the point A in rapport to $O_{C} O_{B}$; this will be the point M, and if we construct the symmetric of the point A in rapport to $O_{C^{\prime}} O_{B^{\prime}}$ we obtain the point M^{\prime}

Lazare Carnot (1753-1823), French mathematician, mechanical engineer and political personality. (Paris)

B. Proof of the construction

Because $A O_{C}=A O_{B}$ and M is the symmetric of the point A in rapport of $O_{C} O_{B}$, it results that the quadrilateral $A O_{C} M O_{B}$ will be a rhombus, therefore $O_{C} A=O_{C} M$ and $O_{B} A=O_{B} M$. On the other hand, O_{C} and O_{B} being perpendicular points of $A B$ respectively $A C$, we have $O_{C} A=O_{C} B$ and $O_{B} A=O_{B} C$, consequently

$$
O_{C} A=O_{C} M=O_{B} A=O_{B} M=O_{B} C,
$$

which shows that the circumscribed circles to the triangles $M A B$ and $M A C$ are congruent.
Similarly, it results that the circumscribed circles to the triangles $A B M^{\prime}$ and $A C M^{\prime}$ are congruent, more so, all the circumscribed circles to the triangles $M A B, M A C, M^{\prime} A B, M^{\prime} A C$ are congruent.

As it can be in the Fig. 2, the point M^{\prime} is in the exterior of the triangle $A B C$

Discussion

We can obtain, using the method of construction shown above, an infinity of pairs of points M and M^{\prime}, such that the circumscribed circles to the triangles
$M A B, M A C, M^{\prime} A B, M^{\prime} A C$ will be congruent. It seems that the point M^{\prime} is in the exterior of the triangle $A B C$

Fig. 2

Observation

The points M from the exterior of the triangle $A B C$ with the property described in the hypothesis are those that belong to the arch $B C$, which does not contain the vertex A from the circumscribed circle of the triangle $A B C$.

Now, we'll try to answer to the following:

Questions

1. Can the circumscribed circles to the triangles $M A B, M A C$ with M in the interior of the triangle $A B C$ be congruent with the circumscribed circle of the triangle $A B C$
2. If yes, then, what can we say about the point M ?

Answers

1. The answer is positive. In this hypothesis we have $O A=A O_{B}=A O_{C}$ and it results also that O_{C} and O_{B} are the symmetrical of O in rapport to $A B$ respectively $A C$ The point M will be, as we showed, the symmetric of the point A in rapport to $O_{C} O_{B}$.
The point M will be also the orthocenter of the triangle $A B C$. Indeed, we prove that the symmetric of the point A in rapport to $O_{C} O_{B}$ is H which is the orthocenter of the triangle $A B C$ Let $R S$ the middle line of the triangle $A B C$. We observe that $R S$ is also middle line in the triangle $O O_{B} O_{C}$, therefore $O_{B} O_{C}$ is parallel and congruent with $B C$, therefore it results that M belongs to the height constructed from A in the triangle $A B C$. We'll note T the middle of $B C$, and let R the radius of the circumscribed circle to the triangle $A B C$; we have

$$
O T=\sqrt{R^{2}-\frac{a^{2}}{4}}, \text { where } a=B C .
$$

If P is the middle of thesegment $A M$, we have

$$
A P=\sqrt{R^{2}-P O_{B}^{2}}=\sqrt{R^{2}-\frac{a^{2}}{4}} .
$$

From the relation $A M=2 \cdot O T$ it results that M is the orthocenter of the triangle $A B C$, ($A H=2 O T$).

The answers to the questions 1 and 2 can be grouped in the following form:

Proposition

There is onlyone point in the interior of the triangle $A B C$ such that the circumscribed circles to the triangles $M A B, M A C$ and $A B C$ are congruent. This point is the orthocenter of the triangle $A B C$.

Remark

From this proposition it practically results that the unique point M from the interior of the right triangle $A B C$ with the property that the circumscribed circles to the triangles
$M A B, M A C, M B C$ are congruent with the circumscribed circle to the triangle is the point H, the triangle's orthocenter.

Definition

If in the triangle $A B C, H$ is the orthocenter, then the circumscribed circles to the triangles $H A B, H A C, H B C$ are called Carnot circles.

We can prove, without difficulty the following:

Theorem

The Carnot circles of a triangle are congruent with the circumscribed circle to the triangle.

References

[1] C. Mihalescu - Geometria elementelor remarcabile - Ed. Tehnică, Bucharest, 1957.
[2] Johnson, A. R. - Advanced Euclidean Geometry - Dover Publications, Inc., New York, 2007.
[3] Smarandache F., Pătraşcu I. - The geometry of homological triangles Columbus, Ohio, U.S.A, 2012.

